Ahmad M., Waraich E.A., Hafeez M.B., Zulfiqar U., Ahmad Z., Iqbal M.A., Raza A., Slam M.S., Rehman A., Younis U. 2023. Changing climate scenario: perspectives of
Camelina sativa as low-input biofuel and oilseed crop. Global Agricultural Production: Resilience to Climate Change. (pp. 197-236).
https://doi.org/10.1007/978-3-031-14973-3_7
Alberghini B., Zanetti F., Corso M., Boutet S., Lepiniec L., Vecchi A., Monti A. 2022. Camelina [
Camelina sativa (L.) Crantz] seeds as a multi-purpose feedstock for bio-based applications. Industrial Crops and Products 182: 114944.
https://doi.org/10.1016/j.indcrop.2022.114944
Balamurugan V., Abdi G., Karthiksaran C., Thillaigovindhan N., Arulbalachandran D. 2024. A review: improvement of plant tissue culture applications by using nanoparticles. Journal of Nanoparticle Research 26(8): 188.
https://doi.org/10.1007/s11051-024-06103-2
Bashiri H., Kahrizi D., Salmanian A.H., Rahnama H., Azadi P. 2023. Control of erucic acid biosynthesis in camelina (
Camelina sativa) by antisense technology. Cellular and Molecular Biology 69(7): 212-217.
https://doi.org/10.14715/cmb/2023.69.7.34
Bashiri H., Kahrizi D., Salmanian A.H., Rahnama H., Azadi P. 2024. Engineering erucic acid biosynthesis in camelina (
Camelina sativa) via FAE1 gene cloning and antisense technology. Cellular and Molecular Biology 70(7): 243-251.
https://doi.org/10.14715/cmb/2024.70.7.35
Belide S., Petrie J.R., Shrestha P., Singh S.P. 2012. Modification of seed oil composition in Arabidopsis by artificial microRNA-mediated gene silencing. Frontiers in Plant Science 3: 168.
https://doi.org/10.3389/fpls.2012.00168
Birnboim H., Doly J. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7(6): 1513-1523.
https://doi.org/10.1093/nar/7.6.1513
Cromwell C.R., Sung K., Park J., Krysler A.R., Jovel J., Kim S.K., Hubbard B.P. 2018. Incorporation of bridged nucleic acids into CRISPR RNAs improves Cas9 endonuclease specificity. Nature Communications 9(1): 1448.
https://doi.org/10.1038/s41467-018-03927-0
Ebrahimi V., Hashemi A. 2024. CRISPR-based gene editing in plants: focus on reagents and their delivery tools. Bioimpacts 15: 30019.
https://doi.org/10.34172/bi.30019
Ghidoli M., Ponzoni E., Araniti F., Miglio D., Pilu R. 2023. Genetic improvement of
Camelina sativa (L.) Crantz: opportunities and challenges. Plants 12(3): 570.
https://doi.org/10.3390/plants12030570
James D.W., Lim E., Keller J., Plooy I., Ralston E., Dooner H.K. 1995. Directed tagging of the Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene with the maize transposon activator. The Plant Cell 7(3): 309-319.
https://doi.org/10.1105/tpc.7.3.309
Kim H., Lee W.J., Oh Y., Kang S.H., Hur J.K., Lee H., Song W., Lim K.S., Park Y.H., Song B.S. 2020. Enhancement of target specificity of CRISPR–Cas12a by using a chimeric DNA–RNA guide. Nucleic Acids Research 48(15): 8601-8616.
https://doi.org/10.1093/nar/gkaa605
Li J.F., Norville J.E., Aach J., McCormack M., Zhang D., Bush J., Church G.M., Sheen J. 2013. Multiplex and homologous recombination–mediated genome editing in
Arabidopsis and
Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology 31(8): 688-691.
https://doi.org/10.1038/nbt.2654
Liu Q., He D., Xie L. 2019. Prediction of off-target specificity and cell-specific fitness of CRISPR-Cas system using attention boosted deep learning and network-based gene feature. PLoS Computational Biology 15(10): e1007480.
https://doi.org/10.1371/journal.pcbi.1007480
Nishimasu H., Shi X., Ishiguro S., Gao L., Hirano S., Okazaki S., Noda T., Abudayyeh O.O., Gootenberg J.S., Mori H. 2018. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361(6408): 1259-1262.
https://doi.org/10.1126/science.aas9129
Ozseyhan M.E., Kang J., Mu X., Lu C. 2018. Mutagenesis of the FAE1 genes significantly changes fatty acid composition in seeds of
Camelina sativa. Plant Physiology and Biochemistry 123: 1-7.
https://doi.org/10.1016/j.plaphy.2017.11.021
Patra N., Barker G.C., Maiti M.K. 2025. Knockout of fatty acid elongase1 homeoalleles in amphidiploid
Brassica juncea leads to undetectable erucic acid in seed oil. Plant Physiology and Biochemistry 222: 109679.
https://doi.org/10.1016/j.plaphy.2025.109679
Rezaeva B.R., Rutten T., Bollmann C., Ortleb S., Melzer M., Kumlehn J. 2024. Plant regeneration via adventitious shoot formation from immature zygotic embryo explants of camelina. Plants 13(4): 465.
https://doi.org/10.3390/plants13040465
Sabbadini S., Capriotti L., Molesini B., Pandolfini T., Navacchi O., Limera C., Ricci A., Mezzetti B. 2019. Comparison of regeneration capacity and
Agrobacterium-mediated cell transformation efficiency of different cultivars and rootstocks of
Vitis spp. via organogenesis. Scientific Reports 9(1): 582.
https://doi.org/10.1038/s41598-018-37335-7
Saraswat P., Chaturvedi A., Ranjan R. 2023. Zinc finger nuclease (ZFNs) and transcription activator-like effector nucleases (TALENs) based genome editing in enhancement of anticancer activity of plants plant-derived anticancer drugs in the OMICS era (pp. 281-293): Apple Academic Press.
Sinha S., Jha J.K., Maiti M.K., Basu A., Mukhopadhyay U.K., Sen S.K. 2007. Metabolic engineering of fatty acid biosynthesis in Indian mustard (
Brassica juncea) improves nutritional quality of seed oil. Plant Biotechnology Reports 1: 185-197.
https://doi.org/10.1007/s11816-007-0032-5
Wada N., Ueta R., Osakabe Y., Osakabe K. 2020. Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering. BMC Plant Biology 20: 234.
https://doi.org/10.1186/s12870-020-02385-5
Wang P., Xiong X., Zhang X., Wu G., Liu F. 2022. A review of erucic acid production in Brassicaceae oilseeds: progress and prospects for the genetic engineering of high and low-erucic acid rapeseeds (
Brassica napus). Frontiers in Plant Science 13: 899076.
https://doi.org/10.3389/fpls.2022.899076
Yemets A., Boychuk Y.N., Shysha E., Rakhmetov D., Blume Y.B. 2013. Establishment of in vitro culture, plant regeneration, and genetic transformation of
Camelina sativa. Cytology and Genetics 47: 138-144.
https://doi.org/10.3103/S0095452713030031