Adhikari L., Baral R., Paudel D., Min D., Makaju S.O., Poudel H. P., Acharya J.P., Missaoui A.M. 2022. Cold stress in plants: strategies to improve cold tolerance in forage species. Plant Stress 4: 100081.
https://doi.org/10.1016/j.stress.2022.100081
Buntin G.D., Grey T.L., Harris G.H., Phillips D., Prostko E.P., Raymer P., Smith N.B., Sumner P.E., Woodruff J. 2007. Canola production in Georgia. University of Georgia.
http://hdl.handle.net/10724/12153
Cheng G., Zhang L., Wang H., Lu J., Wei H., Yu S. 2020. Transcriptomic profiling of young cotyledons response to chilling stress in two contrasting cotton (
Gossypium hirsutum L.) genotypes at the seedling stage. International Journal of Molecular Sciences 21(14): 5095.
https://doi.org/10.3390/ijms21145095
De Meyer S., Cruz D.F., De Swaef T., Lootens P., De Block J., Bird K., Sprenger H., Van de Voorde M., Hawinkel S., Van Hautegem T., Inzé D. 2023. Predicting yield of individual field-grown rapeseed plants from rosette-stage leaf gene expression. PLoS Computational Biology 19(5): e1011161.
https://doi.org/10.1371/journal.pcbi.1011161
Dhaliwal L.K., Angeles-Shim R.B. 2022. Cell membrane features as potential breeding targets to improve cold germination ability of seeds. Plants 11(23): 3400.
https://doi.org/10.3390/plants11233400
Dobrokhotov A., Kozyreva L., Fesenko M., Dubovitskaya V., Sushko S. 2023. Soil sulfur deficiency restricts canola (
Brassica napus) productivity in Northwestern Russia regardless of NPK fertilization level. Agriculture 13(7): 1409.
https://doi.org/10.3390/agriculture13071409
Feng Y., Li Z., Kong X., Khan A., Ullah N., Zhang X. 2025. Plant coping with cold stress: molecular and physiological adaptive mechanisms with future perspectives. Cells 14(2): 110.
https://doi.org/10.3390/cells14020110
Fiebelkorn D., Rahman M. 2016. Development of a protocol for frost-tolerance evaluation in rapeseed/canola (
Brassica napus L.). The Crop Journal 4(2): 147-152.
https://doi.org/10.1016/j.cj.2015.11.004
Flakelar C.L., Doran G.S., Howitt J.A., Luckett D.J., Prenzler P.D. 2018. Effects of storage temperature and duration on bioactive concentrations in the seed and oil of
Brassica napus (Canola). European Journal of Lipid Science and Technology 120(2): 1700335.
https://doi.org/10.1002/ejlt.201700335
Fürtauer L., Weiszmann J., Weckwerth W., Nägele T. 2019. Dynamics of plant metabolism during cold acclimation. International Journal of Molecular Sciences 20(21): 5411.
https://doi.org/10.3390/ijms20215411
Goering R., Larsen S., Tan J., Whelan J., Makarevitch I. 2021. QTL mapping of seedling tolerance to exposure to low temperature in the maize IBM RIL population. Plos One 16(7): e0254437.
https://doi.org/10.1371/journal.pone.0254437
Haj Sghaier A., Tarnawa Á., Khaeim H., Kovács G.P., Gyuricza C., Kende Z. 2022. The effects of temperature and water on the seed germination and seedling development of rapeseed (
Brassica napus L.). Plants 11(21): 2819.
https://doi.org/10.3390/plants11212819
He Q., Lu Q., He Y., Wang Y., Zhang N., Zhao W., Zhang L. 2020. Dynamic changes of the anthocyanin biosynthesis mechanism during the development of heading Chinese cabbage (
Brassica rapa L.) and Arabidopsis under the control of BrMYB2. Frontiers in Plant Science 11: 593766.
https://doi.org/10.3389/fpls.2020.593766
Ismaili A., Salavati A., Pour Mohammadi P. 2015. A comparative proteomic analysis of responses to high temperature stress in hypocotyl of canola (
Brassica napus L.). Protein and Peptide Letters 22(3): 285-299.
https://doi.org/10.2174/0929866521666141124102755
Jan S.A., Bibi N., Shinwari Z.K., Rabbani M.A., Ullah S., Qadir A., Khan N. 2017. Impact of salt, drought, heat and frost stresses on morpho-biochemical and physiological properties of
Brassica species: an updated review. Journal of Pure and Applied Agriculture 2(1): 1-10.
https://ojs.aiou.edu.pk/index.php/jpaa/article/view/1938
Kniuipytė I., Dikšaitytė A., Praspaliauskas M., Pedišius N., Žaltauskaitė J. 2023. Oilseed rape (
Brassica napus) potential to remediate Cd contaminated soil under different soil water content. Journal of Environmental Management 325: 116627.
https://doi.org/10.1016/j.jenvman.2022.116627
Kourani M., Mohareb F., Rezwan F.I., Anastasiadi M., Hammond J.P. 2022. Genetic and physiological responses to heat stress in
Brassica napus. Frontiers in Plant Science 13: 832147.
https://doi.org/10.3389/fpls.2022.832147
Kovaleski S., Heldwein A.B., Dalmago G.A., de Gouvêa J.A. 2019. Frost damage to canola (
Brassica napus L.) during reproductive phase in a controlled environment. Agrometeoros 27(2): 397-407.
https://doi.org/10.31062/agrom.v27i2.26463
Liu M., Hu F., Liu L., Lu X., Li R., Wang J., Wu J., Ma L., Pu Y., Fang Y., Yang G. 2023. Physiological analysis and genetic mapping of short hypocotyl trait in
Brassica napus L. International Journal of Molecular Sciences 24(20): 15409.
https://doi.org/10.3390/ijms242015409
Luo T., Xian M., Zhang C., Zhang C., Hu L., Xu Z. 2019. Associating transcriptional regulation for rapid germination of rapeseed (
Brassica napus L.) under low temperature stress through weighted gene co-expression network analysis. Scientific Reports 9(1): 55.
https://doi.org/10.1038/s41598-018-37099-0
Meza-Basso L., Alberdi M., Raynal M., Ferrero-Cadinanos M.L., Delseny M. 1986. Changes in protein synthesis in rapeseed (
Brassica napus) seedlings during a low temperature treatment. Plant Physiology 82(3): 733-738.
https://doi.org/10.1104/pp.82.3.733
Naveed M., Sajid H., Mustafa A., Niamat B., Ahmad Z., Yaseen M., Kamran M., Rafique M., Ahmar S., Chen J.T. 2020. Alleviation of salinity-induced oxidative stress, improvement in growth, physiology and mineral nutrition of canola (
Brassica napus L.) through calcium-fortified composted animal manure. Sustainability 12(3): 846.
https://doi.org/10.3390/su12030846
Qi W., Wang F., Ma L., Qi Z., Liu S., Chen C., Wu J., Wang P., Yang C., Wu Y., Sun W. 2020. Physiological and biochemical mechanisms and cytology of cold tolerance in
Brassica napus. Frontiers in Plant Science 11: 1241.
https://doi.org/10.3389/fpls.2020.01241
Qin M., Li H., Guo Z., Zhu Y., Wang R., Zhang M., Zhang Q., Xu Y., Song J., Huang Z., Xu A. 2023. Phenotypic damage and transcriptomic responses of flower buds in rapeseed (
Brassica napus L.) under low-temperature stress. Industrial Crops and Products 198: 116669.
https://doi.org/10.1016/j.indcrop.2023.116669
Rathke G.W., Behrens T., Diepenbrock W. 2006. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (
Brassica napus L.): a review. Agriculture, Ecosystems & Environment 117(2-3): 80-108.
https://doi.org/10.1016/j.agee.2006.04.006
Raza A., Su W., Hussain M.A., Mehmood S.S., Zhang X., Cheng Y., Zou X., Lv Y. 2021. Integrated analysis of metabolome and transcriptome reveals insights for cold tolerance in rapeseed (
Brassica napus L.). Frontiers in Plant Science 12: 721681.
https://doi.org/10.3389/fpls.2021.721681
Rezaizad A., Shiraini Rad A.H., Saed-Moucheshi A., Zareei Siahbidi A. 2025. The response of promising winter rapeseed lines to delayed cultivation. Agrotechniques in Industrial Crops 5(2): 119-126.
https://doi.org/10.22126/atic.2024.11169.1165
Rezaizad A., Yazdandoost M., Azizi M. 2023. Cold stress and its management. In: Oghan A.H. (Ed), Knowledge of rapeseed production in Iran. University Publishing Center, Tehran, Iran. (In Farsi).
Shaffer J.A., Fritton D.D., Jung G.A., Stout W.L. 1990. Control of soil physical properties and response of
Brassica rapa L. seedling roots. Plant and Soil 122(1): 9-19.
https://doi.org/10.1007/BF02851905
Shen Y., McLaughlin N., Zhang X., Xu M., Liang A. 2018. Effect of tillage and crop residue on soil temperature following planting for a black soil in Northeast China. Scientific Reports 8(1): 4500.
https://doi.org/10.1038/s41598-018-22822-8
Stachurska J., Sadura I., Jurczyk B., Rudolphi-Szydło E., Dyba B., Pociecha E., Ostrowska A., Rys M., Kvasnica M., Oklestkova J., Janeczko A. 2024. Cold acclimation and deacclimation of winter oilseed rape, with special attention being paid to the role of brassinosteroids. International Journal of Molecular Sciences 25(11): 6010.
https://doi.org/10.3390/ijms25116010
Swegarden H.R. 2020. Deploying consumer-driven strategies in the breeding of leafy
Brassica oleracea L. genotypes, Cornell University.
https://doi.org/10.7298/wx1n-9x04
Wu G., Zhou Y., Zhang J., Gong M., Jiang L., Zhu Y. 2025. Genome-wide association study and candidate gene identification for the cold tolerance at the seedling stage of rapeseed (
Brassica napus L.). Crop Design 4(1): 100083.
https://doi.org/10.1016/j.cropd.2024.100083
Xu
Q.Q.,
Sami A.,
Zhang
H.,
Jin X.Z.,
Zheng
W.Y.,
Zhu
Z.Y.,
Wu
L.L.,
Lei
Y.H.,
Chen
Z.P.,
Li
Y.,
Yu
Y.
2022.
Combined
influence of low temperature and drought on different
varieties
of
rapeseed
(
Brassica napus L.).
South
African
Journal
of
Botany
147:
400-414.
https://doi.org/10.1016/j.sajb.2022.02.003
Zareei Siahbidi A., Rezaeizad A., Asgari A., Shirani Rad A.H. 2020. Response of some fall and spring type rapeseed cultivars to normal and late planting date. Journal of Agricultural Science and Sustainable Production 30(2): 59-69. (In Farsi).
https://dor.isc.ac/dor/20.1001.1.24764310.1399.30.2.4.7
Zhang S., Liao X., Zhang C., Xu H. 2012. Influences of plant density on the seed yield and oil content of winter oilseed rape (
Brassica napus L.). Industrial Crops and Products 40: 27-32.
https://doi.org/10.1016/j.indcrop.2012.02.016
Zhang Y., Wang G., Li L., Li Y., Zhou B., Yan H. 2020. Identification and expression analysis of BrTT8 during anthocyanin biosynthesis and exposure to abiotic stress in turnip (
Brassica rapa subsp. rapa ‘Tsuda’). Scientia Horticulturae 268: 109332.
https://doi.org/10.1016/j.scienta.2020.109332
Zhou H., Lin‐Wang K., Wang H., Gu C., Dare A.P., Espley R.V., He H., Allan A.C., Han Y. 2015. Molecular genetics of blood‐fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. The Plant Journal 82(1): 105-121.
https://doi.org/10.1111/tpj.12792