Abedi E., Kaveh S., Hashemi S.M. 2024. Structure-based modification of a-amylase by conventional and emerging technologies: Comparative study on the secondary structure, activity, thermal stability and amylolysis efficiency. Food Chemistry 437: 137903.
https://doi.org/10.1016/j.foodchem.2023.137903
Altenbuchner J. 2016. Editing of the
Bacillus subtilis genome by the CRISPR-Cas9 system. Applied and Environmental Microbiology 82(17): 5421-5427.
https://doi.org/10.1128/AEM.01453-16
Ashok P.P., Dasgupta D., Ray A., Suman S.K. 2024. Challenges and prospects of microbial α-amylases for industrial application: a review. World Journal of Microbiology and Biotechnology 40(2): 44.
https://doi.org/10.1007/s11274-023-03821-y
Blom E.J., Ridder A.N., Lulko A.T., Roerdink J.B., Kuipers O.P. 2011. Time-resolved transcriptomics and bioinformatic analyses reveal intrinsic stress responses during batch culture of
Bacillus subtilis. PLoS One 6(11): e27160.
https://doi.org/10.1371/journal.pone.0027160
Dammer L., Carus M., Porc O. 2023. The use of food and feed crops for bio-based materials and the related effects on food security: Promoting evidence-based debates and recognizing potential benefits. Industrial Biotechnology 19(5): 257-271.
https://doi.org/10.1089/ind.2023.29324.lda
Farooq M.A., Ali S., Hassan A., Tahir H.M., Mumtaz S., Mumtaz S. 2021. Biosynthesis and industrial applications of α-amylase: a review. Archives of Microbiology 203(4): 1281-1292.
https://doi.org/10.1007/s00203-020-02128-y
Fu G., Liu J., Li J., Zhu B., Zhang D. 2018. Systematic screening of optimal signal peptides for secretory production of heterologous proteins in
Bacillus subtilis. Journal of Agricultural and Food Chemistry 66(50): 13141-13151.
https://doi.org/10.1021/acs.jafc.8b04183
Guan C., Cui W., Cheng J., Liu R., Liu Z., Zhou L., Zhou Z. 2016. Construction of a highly active secretory expression system via an engineered dual promoter and a highly efficient signal peptide in
Bacillus subtilis. New Biotechnology 33(3): 372-379.
https://doi.org/10.1016/j.nbt.2016.01.005
Guiziou S., Sauveplane V., Chang H.J., Clerté C., Declerck N., Jules M., Bonnet J. 2016. A part toolbox to tune genetic expression in
Bacillus subtilis. Nucleic Acids Research 44(15): 7495-7508.
https://doi.org/10.1093/nar/gkw624
Hou J., Liu T., Reid S., Zhang H., Peng X., Sun K., Du J., Sonnewald U., Song B. 2019. Silencing of α-amylase StAmy23 in potato tuber leads to delayed sprouting. Plant Physiology and Biochemistry 139: 411-418.
https://doi.org/10.1016/j.plaphy.2019.03.044
Jun J.S., Jeong H.E., Hong K.W. 2023. Exploring and engineering novel strong promoters for high-level protein expression in
Bacillus subtilis DB104 through transcriptome analysis. Microorganisms 11(12): 2929.
https://doi.org/10.3390/microorganisms11122929
Kõressaar T., Lepamets M., Kaplinski L., Raime K., Andreson R., Remm M. 2018. Primer3_masker: integrating masking of template sequence with primer design software. Bioinformatics 34(11): 1937-1938.
https://doi.org/10.1093/bioinformatics/bty036
Krishnappa L., Monteferrante C.G., Neef J., Dreisbach A., van Dijl J.M. 2014. Degradation of extracytoplasmic catalysts for protein folding in
Bacillus subtilis. Applied and Environmental Microbiology 80(4): 1463-1468.
https://doi.org/10.1128/AEM.02799-13
Liu Y., Shi C., Li D., Chen X., Li J., Zhang Y., Yuan H., Li Y., Lu F. 2019. Engineering a highly efficient expression system to produce BcaPRO protease in
Bacillus subtilis by an optimized promoter and signal peptide. International Journal of Biological Macromolecules 138: 903-911.
https://doi.org/10.1016/j.ijbiomac.2019.07.175
Miao C.C., Han L.L., Lu Y.B., Feng H. 2020. Construction of a high-expression system in
Bacillus through transcriptomic profiling and promoter engineering. Microorganisms 8(7): 1030.
https://doi.org/10.3390/microorganisms8071030
Nataraj N.B., Sudhakaran R. 2023. Screening of various promoters for increased protein expression: Testing promoters for expression of proinsulin. Journal of Microbiology, Biotechnology and Food Sciences 13(3): e9863.
https://doi.org/10.55251/jmbfs.9863
Olawoye B., Jolayemi O.S., Origbemisoye B.A., Oluwajuyitan T.D., Popoola-Akinola O. 2023. Hydrolysis of starch. InStarch: Advances in modifications, technologies and applications (pp. 83-101). Springer, Cham.
https://doi.org/10.1007/978-3-031-35843-2_4
Phan T.T., Nguyen H.D., Schumann W. 2012. Development of a strong intracellular expression system for
Bacillus subtilis by optimizing promoter elements. Journal of Biotechnology 157(1): 167-172.
https://doi.org/10.1016/j.jbiotec.2011.10.006
Rana N., Walia A., Gaur A. 2013. α-Amylases from microbial sources and its potential applications in various industries. National Academy Science Letters 36(1): 9-17.
https://doi.org/10.1007/s40009-012-0104-0
Singh R., Jain R., Soni P., de Los Santos-Villalobos S., Chattaraj S., Roy D., Mitra D., Gaur A. 2024. Graphing the green route: enzymatic hydrolysis in sustainable decomposition. Current Research in Microbial Sciences 7: 100281.
https://doi.org/10.1016/j.crmicr.2024.100281
Song Y., Nikoloff J.M., Fu G., Chen J., Li Q., Xie N., Zheng P., Sun J., Zhang D. 2016. Promoter screening from
Bacillus subtilis in various conditions hunting for synthetic biology and industrial applications. PLoS One 11(7): e0158447.
https://doi.org/10.1371/journal.pone.0158447
Urbanchuk J.M., Kowalski D.J., Dale B., Kim S. 2009. Corn amylase: Improving the efficiency and environmental footprint of corn to ethanol through plant biotechnology. AgBioForum 12(2): 149-154.
https://agbioforum.org/389-2/
Volkenborn K., Kuschmierz L., Benz N., Lenz P., Knapp A., Jaeger K.E. 2020. The length of ribosomal binding site spacer sequence controls the production yield for intracellular and secreted proteins by
Bacillus subtilis. Microbial Cell Factories 19(1): 154.
https://doi.org/10.1186/s12934-020-01404-2
Xu J., Liu X., Yu X., Chu X., Tian J., Wu N. 2020. Identification and characterization of sequence signatures in the
Bacillus subtilis promoter P ylb for tuning promoter strength. Biotechnology Letters 42(1): 115-124.
https://doi.org/10.1007/s10529-019-02749-4
Yang M., Zhang W., Ji S., Cao P., Chen Y., Zhao X. 2013. Generation of an artificial double promoter for protein expression in
Bacillus subtilis through a promoter trap system. PLoS One 8(2): e56321.
https://doi.org/10.1371/journal.pone.0056321
Yao D., Su L., Li N., Wu J. 2019. Enhanced extracellular expression of
Bacillus stearothermophilus α-amylase in
Bacillus subtilis through signal peptide optimization, chaperone overexpression and α-amylase mutant selection.
Microbial
Cell
Factories
18(1):
69.
https://doi.org/10.1186/s12934-019-1119-8
Yu X., Xu J., Liu X., Chu X., Wang P., Tian J., Wu N., Fan Y. 2015. Identification of a highly efficient stationary phase promoter in
Bacillus subtilis. Scientific Reports 5(1): 18405.
https://doi.org/10.1038/srep18405
Yu Z., Huang C., Li Y., Du Y., Zhou J. 2019. Influence of the pretreatment method on the hydrolysis of cassava starch factory residue. Environmental Progress & Sustainable Energy 38(2): 624-629.
https://doi.org/10.1002/ep.12963
Yuzbashev T.V., Yuzbasheva E.Y., Melkina O.E., Patel D., Bubnov D., Dietz H., Ledesma-Amaro R. 2023. A DNA assembly toolkit to unlock the CRISPR/Cas9 potential for metabolic engineering. Communications Biology 6(1): 858.
https://doi.org/10.1038/s42003-023-05202-5
Zhang M., Song J., Xiao J., Jin J., Nomura C.T., Chen S., Wang Q. 2022. Engineered multiple translation initiation sites: a novel tool to enhance protein production in
Bacillus licheniformis and other industrially relevant bacteria. Nucleic Acids Research 50(20): 11979-11990.
https://doi.org/10.1093/nar/gkac1039
Zhou C., Ye B., Cheng S., Zhao L., Liu Y., Jiang J., Yan X. 2019. Promoter engineering enables overproduction of foreign proteins from a single copy expression cassette in
Bacillus subtilis. Microbial Cell Factories 18(1): 111.
https://doi.org/10.1186/s12934-019-1159-0