Effects of Explant Types and Phytohormones on Azarshahr Red Onion Micropropagation

Document Type : Original Article

Authors

Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran

10.22126/atic.2025.11448.1178

Abstract

The Azarshahr red onion (Allium cepa L.), also known as “Germez Azarshahr”, is a native variety widely cultivated in northwestern Iran and highly valued for its culinary and pharmacological properties. Seed propagation of this variety is not economical as it results in uneven sowing and excessive consumption of resources such as water. In addition, the yield has significantly decreased due to abiotic and biotic stresses. Since there are no reports on the in vitro regeneration of commercially important onion varieties in Iran, this study aimed to evaluate the impact of different explants (mature embryo, basal plate and leaf) and different doses of auxin growth regulators -Naphthaleneacetic Acid (NAA), Picloram, and 2,4-dichlorophenoxyacetic acid (2,4-D)- both individually and together with 6-benzylaminopurine (BAP), on callus induction and regeneration of this variety to improve its use in molecular breeding and genetic engineering programs. The experiments were arranged in a completely randomized design with three replicates, and the data were analyzed using ANOVA and Duncan’s multiple-range test (p≤0.05). The results indicated that the basal plate (50.65%) and mature embryo (40.22%) were the most effective for callus induction in different media. 2,4-D demonstrated superior efficiency in callus induction and production of high-quality embryogenic calli. The maximum callus induction rates were 81.67% for basal plates and 71.33% for mature embryos using Gamborg (B5) medium with BAP + 2,4-D (2+1 mg L-1). Furthermore, fifteen shoots were successfully regenerated from each basal plate callus at a frequency of 61.55% using B5 medium with BAP + NAA (1.5+0.1 mg L-1). This optimized protocol is suitable for rapid clonal propagation, germplasm preservation, and conducting genetic transformation studies of the Azarshahr red onion variety.

Graphical Abstract

Effects of Explant Types and Phytohormones on Azarshahr Red Onion Micropropagation

Highlights

  • An optimized protocol for callus formation and shoot regeneration in Allium cepa (Azarshar cultivar red onion) is presented, aimed at facilitating crop improvement through genetic transformation.
  • The basal plate explant proved most effective for both callus formation and shoot regeneration.
  • 2,4-D combined with BAP demonstrated superior callus induction efficiency and resulted in a higher weight of embryogenic calli compared to Picloram and NAA.
  • Shoot initiation from callus varied significantly in response to different cytokinins.
  • High concentrations of NAA with BAP induced root-like structures in regeneration media.

Keywords

Main Subjects


A’yun R.Q., Dinarti D., Husni A., Kosmiatin M. 2021. Callus regeneration and polyploidy induction of Allium cepa L var. Bima Brebes using oryzalin. InIOP Conference Series: Earth and Environmental Science 948(1): 012043. https://doi.org/10.1088/1755-1315/948/1/012043
Ahmad-Dar S.A., Nawchoo I.A., Tyub S., Kamili A.N. 2021. Effect of plant growth regulators on in vitro induction and maintenance of callus from leaf and root explants of Atropa acuminata Royle ex Lindl. Biotechnology Reports 32: e00688. https://doi.org/10.1016/j.btre.2021.e00688
Aswath C.R., Mo S.Y., Kim D.H., Park S.W. 2005. Agrobacterium and biolistic transformation of onion using non-antibiotic selection marker phosphomannose isomerase. Plant Cell Reports 25: 92-99. https://doi.org/10.1007/s00299-005-0022-4
Bohanec B., Jakše M., Ihan A., Javornik B. 1995. Studies of gynogenesis in onion (Allium cepa L.): Induction procedures and genetic analysis of regenerants. Plant Science 104(2): 215-224. https://doi.org/10.1016/0168-9452(94)04030-k
Buiteveld J., van der Valk P., Jansen J., Creemers-Molenaar J., Colijn-Hooymans C.M. 1993. Callus induction and plant regeneration from explants of commercial cultivars of leek (Allium ampeloprasum var. porrum L.). Plant Cell Reports 12(7-8): 431-434. https://doi.org/10.1007/BF00234707
Dharmayanti K., Sulistyaningsih E., Wulandari R.A. 2018. Callus induction on true shallot seed explant using a combination of BA and 2,4-D. Ilmu Pertanian (Agricultural Science) 2(3): 137-143. https://doi.org/10.22146/ipas.26276
FAO. 2023. FAOSTAT. Food and Agriculture Organization of the United Nations-FAO Statistical Database. http://faostat.fao.org/
Farhadi N., Panahandeh J., Azar A.M., Salte S.A. 2017. Effects of explant type, growth regulators and light intensity on callus induction and plant regeneration in four ecotypes of Persian shallot (Allium hirtifolium). Scientia Horticulturae 218: 80-86. https://doi.org/10.1016/j.scienta.2016.11.056
Gamborg O.L., Miller R., Ojima K. 1968. Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research 50(1): 151-158. https://doi.org/10.1016/0014-4827(68)90403-5
Hailu M.G., Mawcha K.T., Nshimiyimana S., Suharsono S. 2021. Garlic micro-propagation and polyploidy induction in vitro by colchicine. Plant Breeding and Biotechnology 9: 1-19. https://doi.org/10.9787/pbb.2021.9.1.1 
Haque M.S. 2023. Somatic embryogenesis and direct shoot bud formation from in vitro root segments of garlic (Allium sativum L.). Plant Tissue Culture and Biotechnology 33(2): 135-142. https://doi.org/10.3329/ptcb.v33i2.70438
He P., Shen L., Lu C., Chen Y., Zhu L. 1998. Analysis of quantitative trait loci which contribute to anther culturability in rice (Oryza sativa L.). Molecular Breeding 4: 165-172. https://doi.org/10.1023/A:1009692221152
Keighobadi K., Golabadi M., Khozaei M., Rezai A. 2020. Screening of factors affecting somatic callusing and embryo induction in Allium cepa L. through Plackett–Burman methodology. Turkish Journal of Agriculture and Forestry 44(3): 312-321. https://doi.org/10.3906/tar-1905-43
Kristina N., Herawati N., Resigia E. 2023. Shoots and roots induction of garlic on different composition of plant growth regulators and photoperiod. IOP Conference Series: Earth and Environmental Science 1177: 012025. https://doi.org/10.1088/1755-1315/1177/1/012025
Malik G., Dhatt A.S., Malik A.A. 2021. A review of genetic understanding and amelioration of edible Allium species. Food Reviews International 37(4): 415-446. https://doi.org/10.1080/87559129.2019.1709202
Malla A., Srinivasan B., Shanmugaraj B.M., Ramalingam S. 2015. Micropropagation and DNA delivery studies in onion cultivars of Bellary, CO3. Journal of Crop Science and Biotechnology 18(1): 37-43. https://doi.org/10.1007/s12892-014-0101-6
Manape T.K., Satheesh V., Singh S., Singh M., Anandhan S. 2022. Improved method for regeneration and Agrobacterium-mediated transformation of Indian short-day onion (Allium cepa L.). Plant Cell, Tissue and Organ Culture 148(1): 61-72. https://doi.org/10.1007/s11240-021-02161-9
Marinangeli P.A., Zappacosta D.C., Curvetto N.R., Galmarini C.R. 2005. Callus induction and plant regeneration in onion (Allium cepa L.). Acta Horticulturae 688: 301-308. https://doi.org/10.17660/actahortic.2005.688.43
Mostafa H.H., Wang H., Song J., Li X. 2020. Effects of genotypes and explants on garlic callus production and endogenous hormones. Scientific Reports 10(1): 4867. https://doi.org/10.1038/s41598-020-61564-4 
Motavallian A., Yousefbeyk F., Ghazizadeh F., Karimian P., Dehbaneh C.R., Bouzari S., Torshkooh F.A. 2025. Effects of methanol extract from the peel of red onion (Allium cepa L.) on ulcerative colitis induced by acetic acid in wistar rats. Journal of Reports in Pharmaceutical Sciences 13(1): e149403. https://doi.org/10.5812/jrps-149403
Mukhopadhyay M.J., Sengupta P., Mukhopadhyay S., Sen S. 2005. In vitro stable regeneration of onion and garlic from suspension culture and chromosomal instability in solid callus culture. Scientia Horticulturae 104(1): 1-9. https://doi.org/10.1016/j.scienta.2004.09.003
Murashige T., Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15(3): 473. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Nazari T., Mashayekhi K., Mousavizadeh S. 2021. Callogenesis and indirect somatic embryogenesis of Persian leek (Allium ampeloprasum spp. Persicum). Journal of Plant Research (Iranian Journal of Biology) 34(4): 1076-1085. (In Farsi). https://dor.isc.ac/dor/20.1001.1.23832592.1400.34.4.6.9
Neumann K.H., Kumar A., Imani J. 2020. Plant cell and tissue culture – A tool in biotechnology. Springer International Publishing. https://doi.org/10.1007/978-3-030-49098-0
Passi R., Dhatt A.S., Sidhu M.K. 2018. In vitro micropropagation in tropical short day onion (Allium cepa L.). Bangladesh Journal of Botany 47(4): 961-967.
Plabon A., Hoque M., Vabna F., Khatun F. 2021. In vitro regeneration of onion (Allium cepa L.) genotypes under salt stress condition. Asian Research Journal of Agriculture 14(1): 34-43. https://doi.org/10.9734/arja/2021/v14i130116
Ramakrishnan M., Ceasar S.A., Duraipandiyan V., Daniel M.A., Ignacimuthu S. 2013. Efficacious somatic embryogenesis and fertile plant recovery from shoot apex explants of onion (Allium cepa. L.). In Vitro Cellular & Developmental Biology-Plant 49: 285-293. https://doi.org/10.1007/s11627-013-9510-3
Schmidt M., Gonda R., Transiskus S. 2021. Environmental degradation at Lake Urmia (Iran): Exploring the causes and their impacts on rural livelihoods. GeoJournal 86(5): 2149-2163. https://doi.org/10.1007/s10708-020-10180-w
Sivanesan I., Kyoung K.E., Kyoung K.M., Young K.E., Park S.W. 2015. Somatic embryogenesis and plant regeneration from zygotic embryo explants of onion. Horticultura Brasileira 33: 441-447. https://doi.org/10.1590/S0102-053620150000400006
Tagimanova D., Raiser O., Danilova A., Turzhanova A., Khapilina O. 2024. Micropropagation of rare endemic species Allium microdictyon Prokh. threatened in Kazakhstani Altai. Horticulturae 10(9): 943. https://doi.org/10.3390/horticulturae10090943
Tanikawa T., Takagi M., Ichii M. 1996. Plant regeneration from suspension cultures of onion (Allium cepa L.). Plant Tissue Culture Letters 13(3): 259-264. https://doi.org/10.5511/plantbiotechnology1984.13.259
Tubić L., Savić J., Mitić N., Milojević J., Janošević D., Budimir S., Zdravković-Korać S. 2016. Cytokinins differentially affect regeneration, plant growth and antioxidative enzymes activity in chive (Allium schoenoprasum L.). Plant Cell, Tissue and Organ Culture 124: 1-4. https://doi.org/10.1007/s11240-015-0869-1
Watson-Guido W., Jimenez-Bonilla V., Brenes-Madriz J. 2021. Establishment of a protocol for the induction of indirect somatic embryogenesis in Allium sativum (Costa Rican Creole Garlic). Revista Tecnología en Marcha 34(2): 178-186. https://doi.org/10.18845/tm.v34i2.4984
Wu X., Yang F., Piao X., Li K., Lian M., Dai Y. 2015. High-frequency plantlet regeneration by somatic embryogenesis from mature zygotic embryos of onion. New Zealand Journal of Crop and Horticultural Science 43(4): 249-260. https://doi.org/10.1080/01140671.2015.1049621
Yan M.M., Xu C., Kim C.H., Um Y.C., Bah A.A., Guo D.P. 2009. Effects of explant type, culture media and growth regulators on callus induction and plant regeneration of Chinese jiaotou (Allium chinense). Scientia Horticulturae 123(1): 124-128. https://doi.org/10.1016/j.scienta.2009.07.021
Zheng S., Henken B., Sofiari E., Keizer P., Jacobsen E., Kik C., Krens F. 1999. Effect of cytokinins and lines on plant regeneration from long-term callus and suspension cultures of Allium cepa L. Euphytica 108: 83-90. https://doi.org/10.1023/A:1003652211389