Phytochemical Evaluation and Chemotypic Variations in Improved Cultivars and a Native Landrace of Chamomile

Document Type : Original Article

Authors

1 Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

2 Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran

3 Department of Traditional Pharmacy, Faculty of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran

10.22126/atic.2024.10913.1154

Abstract

Chamomile (Matricaria chamomilla L.) is a widely recognized medicinal plant, valued for its essential oil (EO) and flavonoid content, which contribute to its therapeutic properties. The demand for high-quality chamomile has led to the development and cultivation of improved cultivars worldwide. However, the adaptation and yield of these cultivars under different climatic conditions, such as those found in Iran, remain underexplored. This investigation was conducted to evaluate the quality of improved cultivars of chamomile cultivated in the climatic conditions of Iran and compare them with a native landrace. Two cultivars, ‘Zloty Lan’ and ‘Lutea’ were sourced from Germany and cultivated alongside a native landrace in Abadeh city, Fars province, Iran. Agronomic practices, including irrigation and weeding, were standardized across all test groups. Fully open flowers were harvested for analysis. The study focused on essential oil content and composition, as well as total flavonoid content. Both improved cultivars met European Pharmacopoeia standards for EO content, with ‘Zloty Lan’ exhibiting nearly double the EO content of the other samples. The native landrace was rich in α-Bisabolol oxide A (34.5%) and Chamazulene (25.6%), while ‘Zloty Lan’ and ‘Lutea’ also demonstrated significantly higher flavonoid content (87% and 68%, respectively). The results suggest that the climatic conditions of southern Iran, particularly Abadeh, are conducive to cultivating chamomile flowers that meet international quality standards (ISO 19332). The findings highlight the potential of this region for producing high-quality chamomile, with the ‘Zloty Lan’ cultivar showing superior performance in essential oil and flavonoid content.

Graphical Abstract

Phytochemical Evaluation and Chemotypic Variations in Improved Cultivars and a Native Landrace of Chamomile

Highlights

  • Environmental conditions influenced both chamomile cultivars and native landraces.
  • The essential oil (EO) content in all samples met the standards set by the European Pharmacopoeia.
  • The main components of the EO included chamazulene, α-bisabolol oxides, and α-bisabolol.
  • The ‘Zloty Lan’ and ‘Lutea’ cultivars exhibited higher flavonoid content compared to the native landrace.

Keywords

Main Subjects


Acimovic M., Stankovic J., Cvetkovic M., Kiprovski B., Todosijevic M. 2018. Essential oil quality of tetraploid chamomile cultivars grown in Serbia. Journal of Essential Oil Bearing Plants 21(1): 15-22. https://doi.org/10.1080/0972060X.2017.1401962
Azizi M. 2007. Study of four improved cultivars of Matricaria chamomilla L. in climatic condition of Iran. Iranian Journal of Medicinal and Aromatic Plants Research 22(4): 386-396. (In Farsi). https://ijmapr.areeo.ac.ir/article_101766.html?lang=en
Das M. 2014. Chamomile: Medicinal, biochemical, and agricultural aspects. CRC Press. New York.
Dehghani Mashkani M.R., Naghdi Badi H., Darzi M.T., Mehrafarin A., Rezazadeh S., Kadkhoda Z. 2011. The effect of biological and chemical fertilizers on quantitative and qualitative yield of Shirazian Babooneh (Matricaria recutita L.). Journal of Medicinal Plants 10(38): 35-48. (In Farsi). http://jmp.ir/article-1-209-en.html
Ebadi M.T., Azizi M., Omidbaigi R., Hassanzadeh Khayyat M. 2009. The effect of sowing date and seeding levels on quantitative and qualitative yield of chamomile (Matricaria recutita L.). Iranian Journal of Medicinal and Aromatic Plants Research 25(3): 296-308. https://doi.org/10.1055/s-0031-1282324
El abdali Y., Mikou K., Chaouch M., Eloutassi N. 2018. Effect of different drying modes on flavonoid content and antioxidant activity of Matricaria chamomilla. Journal of Applied Science and Environmental Studies 1(1): 1-7. https://doi.org/10.48393/IMIST.PRSM/jases-v1i1.15778
Ghanavati M., Houshmand S.L., Zainali H., Abrahimpour F. 2010. Chemical composition of the essential oils of Matricaria recutita L. belonging to central and south parts of Iran. Journal of Medicinal Plants 9(34): 102-108. (In Farsi). http://dorl.net/dor/20.1001.1.2717204.2010.9.34.10.8
Golzadeh H., Mehrafarin A., Naghdi Badi H., Fazeli F., Qaderi A., Zarinpanjeh N. 2012. Effect of bio-stimulators compounds on quantitative and qualitative yield of German chamomile (Matricaria recutita L.). Journal of Medicinal Plants 11(41): 195-207. (In Farsi). http://dorl.net/dor/20.1001.1.2717204.2012.11.41.28.4
Haghi G., Hatami A., Safaei A., Mehran M. 2014. Analysis of phenolic compounds in Matricaria chamomilla and its extracts by UPLC-UV. Research in Pharmaceutical Sciences 9(1): 31-37.
Homami S.S., Jaimand K., Rezaee M.B., Afzalzadeh R. 2016. Comparative studies of different extraction methods of essential oil from Matricaria recutita L. in Iran. Journal of the Chilean Chemical Society 61(2): 2982-2984. https://doi.org/10.4067/S0717-97072016000200026
Jalali Z., Sefidkon F., Assareh M.H., Attar F. 2008. Comparison of sesquiterpens in the essential oils of Anthemis hyalina DC, Matricaria recutita L. and Matricaria aurea (Loefl.) Schultz-Bip. Iranian Journal of Medicinal and Aromatic Plants Research 24(1): 31-37. (In Farsi). https://ijmapr.areeo.ac.ir/article_10018_en.html
Lawrence B.M. 1994. Progress in essential oils. Perfumer and Flavorist 19(6): 57-62
Mežaka I., Kronberga A., Nakurte I., Taškova I., Jakovels D., Primavera A. 2020. Genetic, chemical and morphological variability of chamomile (Chamomilla recutita L.) populations of Latvia. Industrial Crops and Products 154: 112614. https://doi.org/10.1016/j.indcrop.2020.112614
Nurzyńska-Wierdak R. 2011. The essential oil of Chamomilla recutita (L.) Rausch. cultivated and wild growing in Poland. Annales Universitatis Mariae Curie-Sklodowska 24: 199-206
Orav A., Raal A., Arak E. 2010. Content and composition of the essential oil of Chamomilla recutita (L.) Rauschert from some European countries. Natural Product Research 24(1): 48-55. https://doi.org/10.1080/14786410802560690
Oravec S.V., Oravec J.V., Oravec V. 2006. Breeding of bisabolol diploid and tetraploid varieties of chamomile in Slovakia. In I International Symposium on Chamomile Research, Development and Production 749: 115-120. https://doi.org/10.1021/bk-2016-1218.ch013
Otto L.G., Mondal P., Brassac J., Preiss S., Degenhardt J., He S., Sharbel T.F. 2017. Use of genotyping-by-sequencing to determine the genetic structure in the medicinal plant chamomile, and to identify flowering time and alpha-bisabolol associated SNP-loci by genome-wide association mapping. BMC Genomics 18: 1-18. https://doi.org/10.1186/s12864-017-3991-0
Raal A., Arak E., Orav A., Ivask K. 2003. Comparación de aceites esenciales de Matricaria recutita L. de origen diverso. Ars Pharmaceutica 44(2): 159-165. (In Spanish). http://hdl.handle.net/10481/28213
Saebi A., Minaei S., Mahdavian A., Ebadi M. 2024. Development and evaluation of a prototype precision harvesting unit for medicinal plants – Tested on Hyssopus officinalis L. International Journal of Horticultural Science and Technology 11(3): 369-380. https://doi.org/10.22059/ijhst.2023.358533.636
Šalamon I. 2004. The Slovak gene pool of German chamomile (Matricaria recutita L.) and comparison in its parameters. Horticultural Science 31(2): 70. https://doi.org/10.17221/3795-HORTSCI 
Šalamon I., Ghanavati M., Abrahimpour F. 2010. Potential of medicinal plant production in Iran and variability of chamomile (Matricaria recutita L.) essential oil quality. Journal of Essential Oil Bearing Plants 13(5): 638-643. https://doi.org/10.1080/0972060X.2010.10643874
Schilcher H. 1973. Neuere Erkenntnisse bei der Qualitätsbeurteilung von Kamillenblüten bzw. Kamillenöl. 2. Qualitative Beurteilung des ätherischen Öles in flores chamomillae. Aufteilung der Handelskamillen in vier bzw. fünf chemische Typen. Planta Medica 23(2): 132-144. (In German). https://doi.org/10.1055/s-0028-1099424
Seidler-Lozykowska K. 2006. Chamomile cultivars and their cultivation in Poland. In I International Symposium on Chamomile Research, Development and Production 749: 111-114. https://doi.org/10.17660/ActaHortic.2007.749.10
Shraim A.M., Ahmed T.A., Rahman M.M., Hijji Y.M. 2021. Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT 150: 111932. https://doi.org/10.1016/j.lwt.2021.111932
Singh O., Khanam Z., Misra N., Srivastava M.K. 2011. Chamomile (Matricaria chamomilla L.): An overview. Pharmacognosy Reviews 5(9): 82. https://doi.org/10.4103/0973-7847.79103  
Tsivelika N., Irakli M., Mavromatis A., Chatzopoulou P., Karioti A. 2021. Phenolic profile by HPLC-PDA-MS of Greek chamomile populations and commercial varieties and their antioxidant activity. Foods 10(10): 2345. https://doi.org/10.3390/foods10102345
Tsivelika N., Sarrou E., Gusheva K., Pankou C., Koutsos T., Chatzopoulou P., Mavromatis A. 2018. Phenotypic variation of wild Chamomile (Matricaria chamomilla L.) populations and their evaluation for medicinally important essential oil. Biochemical Systematics and Ecology 80: 21-28. https://doi.org/10.1016/j.bse.2018.06.001
Wesolowska A., Grzeszczuk M., Kulpa D. 2015. Propagation method and distillation apparatus type affect essential oil from different parts of Matricaria recutita L. plants. Journal of Essential Oil Bearing Plants 18(1): 179-194. https://doi.org/10.1080/0972060X.2014.895210