Study of Essential Oil and Antioxidant Capacity of Clematis ispahanica Boiss.

Document Type : Original Article

Authors

1 Department of Rangeland Management, Faculty of Natural Resources, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 Department of Horticultural Science, Tarbiat Modares University, Tehran, Iran

3 Medicinal Plants Research Center, Institute of Medicinal Plants, Tehran, Iran

Abstract

Clematis ispahanica Boiss. is a rare species belonging to the Ranunculaceae family. Clematis ispahanica is highly valued for its ornamental and medicinal properties. The specific traditional uses of Clematis ispahanica in traditional medicine may include curing neurological disorders, syphilis, malaria, rheumatism, gout, diarrhea, and asthma. In this study, leaves of C. ispahanica were collected from collected from Boanat, Kerman Province, Iran. Essential oil isolated from the leaves of C. ispahanica was evaluated for its chemical composition for the first time. GC/MS analyzed the essential oil obtained by hydrodistillation. The chemical analysis of the oil from Clematis ispahanica Boiss. revealed the identification of 50 compounds, accounting for 92.5% of the total oil composition. In the leaves oil, the main components detected were phthalic acid, heptacosane, pentadecanoic acid, methyl ester, and a-pinene with amounts of 51.1 %, 5.8 %, 3.9 %, and 2.9 %, respectively. The analysis of various extracts from Clematis ispahanica Boiss. revealed a significant difference among all of them in Antioxidant activity (AA), Total phenol content (TPC) and Total flavonoid content (TFC) (p≤0.01, p≤0.05). For the antioxidant activity, the results obtained showed that the highest radical scavenging activity was observed in the extract of hexane with IC50 122 μg/ml, and the lowest activity was found in acetone extraction with IC50 170 μg/ml. The highest TPC value was 15.0 mg GAE/g DW in the extract of hexane. The highest TFC belongs to the extract of hexane and methanol with 7.3 mg QE/g and 7.2 mg QE/g. The analysis between TPC (r= 0.708, p≤0.01) and TFC (r= 0.786, p≤0.01) of C. ispahanica and its antioxidant properties were found to have a strong correlation. C. ispahanica exhibits a relatively high level of antioxidant potency and contains a significant amount of total phenolic compounds when extracted with a hexane solvent.

Graphical Abstract

Study of Essential Oil and Antioxidant Capacity of Clematis ispahanica Boiss.

Highlights

  • Essential oil and antioxidant activity of Clematis ispahanica Boiss were evaluated.
  • Total phenol content (TPC) and Total flavonoid content (TFC)  of Clematis ispahanica Boiss were assessed.
  • Positive correlation between the total phenolic content and antioxidant activity of all extracts of Clematis ispahanica Boiss was observed.

Keywords

Main Subjects


Abdisa Z., Kenea F. 2020. Phytochemical screening, antibacterial and antioxidant activity studies on the crude root extract of Clematis hirsuta. Cogent Chemistry 6(1): 1862389. https://doi.org/10.1080/23312009.2020.1862389
Adams R.P. 2017. Identification of essential oil components by gas chromatography/mass spectrometry. 5 online ed. Gruver, TX USA: Texensis Publishing.
Adane A.M., Ayana M.T., Bikilla S.L., Beyene B.B., Kebede M.A., Andualem A.M. 2023. Phytochemical exploration and investigation of in vitro antioxidant and antibacterial activities of different solvent extracts of Clematis Hirsuta (Nech Yeazohareg) leaves. Chemistry Africa 6(2): 855-866. https://doi.org/10.1007/s42250-022-00532-z
Albishi T., John J.A., Al-Khalifa A.S., Shahidi F. 2013. Antioxidative phenolic constituents of skins of onion varieties and their activities. Journal of Functional Foods 5(3): 1191-1203. https://doi.org/10.1016/j.jff.2013.04.002
Babu A., Kumaresan G., Raj V.A.A., Velraj R. 2018. Review of leaf drying: Mechanism and influencing parameters, drying methods, nutrient preservation, and mathematical models. Renewable and Sustainable Energy Reviews 90: 536-556. https://doi.org/10.1016/j.rser.2018.04.002
Barbouchi M., Elamrani K., El Idrissi M. 2020. A comparative study on phytochemical screening, quantification of phenolic contents and antioxidant properties of different solvent extracts from various parts of Pistacia lentiscus L. Journal of King Saud University-Science 32(1): 302-306. https://doi.org/10.1016/j.jksus.2018.05.010 
Bozin B., Mimica-Dukic N., Samojlik I., Jovin E. 2007. Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. Journal of Agricultural and Food Chemistry 55(19): 7879-7885. https://doi.org/10.1021/jf0715323
Chawla R., Kumar S., Sharma A. 2012. The genus Clematis (Ranunculaceae): chemical and pharmacological perspectives. Journal of Ethnopharmacology 143(1): 116-150. https://doi.org/10.1016/j.jep.2012.06.014
Chen G.L., Chen S.G., Xiao Y., Fu N.L. 2018. Antioxidant capacities and total phenolic contents of 30 flowers. Industrial Crops and Products 111: 430-445. https://doi.org/10.1016/j.indcrop.2017.10.051
Do Q.D., Angkawijaya A.E., Tran-Nguyen P.L., Huynh L.H., Soetaredjo F.E., Ismadji S., Ju Y.H. 2014. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis 22(3): 296-302. https://doi.org/10.1016/j.jfda.2013.11.001
El-Chaghaby G.A., Ahmad A.F., Ramis E.S. 2014. Evaluation of the antioxidant and antibacterial properties of various solvents extracts of Annona squamosa L. leaves. Arabian Journal of Chemistry 7(2): 227-233. https://doi.org/10.1016/j.arabjc.2011.06.019 
Feduraev P., Chupakhina G., Maslennikov P., Tacenko N., Skrypnik L. 2019. Variation in phenolic compounds content and antioxidant activity of different plant organs from Rumex crispus L. and Rumex obtusifolius L. at different growth stages. Antioxidants 8(7): 237. https://doi.org/10.3390/antiox8070237
Ferchichi L., Chohra D., Mellouk K., Alsheikh S.M., Cakmak Y.S., Zengin G. 2021. Chemical composition and antioxidant activity of essential oil from the aerial parts of Clematis cirrhosa L. (Ranunculaceae) growing in Algeria. Annals of the Romanian Society for Cell Biology 25(7): 1314-1324. http://annalsofrscb.ro/index.php/journal/article/view/10434
Jimoh F.O., Adedapo A.A., Afolayan A.J. 2011. Comparison of the nutritive value, antioxidant, and antibacterial activities of Sonchus asper and Sonchus oleraceus. Records of Natural Products 5(1): 29-42. https://doi.org/10.4314/ajb.v7i18.59254
Karimi E., Ghorbani Nohooji M., Habibi M., Ebrahimi M., Mehrafarin A., Khalighi-Sigaroodi F. 2018. Antioxidant potential assessment of phenolic and flavonoid-rich fractions of Clematis orientalis and Clematis ispahanica (Ranunculaceae). Natural Product Research 32(16): 1991-1995. https://doi.org/10.1080/14786419.2017.1359171
Kelemen C.D., Houdkova M., Urbanova K., Badarau S., Gurean D., Pamfil D., Kokoska L. 2019. Chemical composition of the essential oils of aerial parts of Aconitum, Anemone, and Ranunculus (Ranunculaceae) species from Romania. Journal of Essential Oil Bearing Plants 22(3): 728-745. https://doi.org/10.1080/0972060X.2019.1637786 
Kumar U., Kumar I., Singh P.K., Yadav J.S., Dwivedi A., Singh P., Mishra S., Sharma R.K. 2024. Total phenolic content and antioxidant activities in methanol extracts of medicinal herbs from Indo-Gangetic plains of India. Journal of Applied Biology & Biotechnology 12(4): 89-99. https://doi.org/10.7324/JABB.2024.172805
Kumar V.A., Ammani K., Siddhartha B., Sreedhar U., Kumar G.A. 2013. Differential biological activities of the solvent extracts of Ceriops decandra (Griff.) and their phytochemical investigations. Journal of Pharmacy Research 7(7): 654-660. https://doi.org/10.1016/j.jopr.2013.05.024
Li H., Zhang D., Tan L.H., Yu B., Zhao S.P., Cao W.G. 2017. Comparison of the antioxidant properties of various solvent extracts from Dipsacus asperoides and identification of phenolic compounds by LC-ESI-QTOF-MS–MS. South African Journal of Botany 109: 1-8. https://doi.org/10.1016/j.sajb.2016.12.018
Llorent-Martínez E.J., Zengin G., Sinan K.I., Polat R., Canlı D., Picot-Allain M.C.N., Mahomoodally M.F. 2020. Impact of different extraction solvents and techniques on the biological activities of Cirsium yildizianum (Asteraceae: Cynareae). Industrial Crops and Products 144: 112033. https://doi.org/10.1016/j.indcrop.2019.112033
Mohdaly A.A., Sarhan M.A., Smetanska I., Mahmoud A. 2010. Antioxidant properties of various solvent extracts of potato peel, sugar beet pulp and sesame cake. Journal of the Science of Food and Agriculture 90(2): 218-226. https://doi.org/10.1002/jsfa.3796
Mostafa M., Ahmed S., Afolayan A. 2018. Antioxidant activity of Clematis brachiata Thunb. leaf. Bangladesh Journal of Scientific and Industrial Research 53(3): 185-190. http://dx.doi.org/10.3329/bjsir.v53i3.38264 
Naika H.R., Krishna V. 2007. Antimicrobial activity of extracts from the leaves of Clematis gouriana Roxb. International Journal Of Pharmaceutical And Bio-Medical Science 1(1): 69-72.
Norani M., Crowford A., Tahamtani Y., Ebadi M., Ayyari M. 2023. Extraction and essential oils profiling of different Dorema ammoniacum D. Don. organs and evaluation of antioxidant capacity. Journal of Agricultural Science and Technology 25(3): 701-717. https://doi.org/10.22034/jast.25.3.701
Ordonez A.A.L., Gomez J.D., Vattuone M.A., lsla M.I. 2006. Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chemistry 97(3): 452-458. https://doi.org/10.1016/j.foodchem.2005.05.024
Prabakaran M., Kim S.H., Sasireka A., Chandrasekaran M., Chung I.M. 2018. Polyphenol composition and antimicrobial activity of various solvent extracts from different plant parts of Moringa oleifera. Food Bioscience 26: 23-29. https://doi.org/10.1016/j.fbio.2018.09.003
Raei F., Ghorbani Nohooji M., Habibi M., Ashoori N. 2014. Antibacterial activity of alcoholic extracts of two Clematis L. (Ranunculaceae) species from Iran. Journal of Medicinal Plants 13(49): 39-45. http://dorl.net/dor/20.1001.1.2717204.2014.13.49.6.2 
Razmjoo J., Aslani H. 2016. Clematis ispahanica Boiss., performances under drought and salinity stresses in Isfahan region. Acta Horticulturae 1190: 77-82. https://doi.org/10.17660/ActaHortic.2018.1190.13
Sadat-Hosseini M., Farajpour M., Boroomand N., Solaimani-Sardou F. 2017. Ethnopharmacological studies of indigenous medicinal plants in the south of Kerman, Iran. Journal of Ethnopharmacology 199: 194-204. https://doi.org/10.1016/j.jep.2017.02.006
Sarikurkcu C., Ozer M.S., Tlili N. 2019. LC–ESI–MS/MS characterization of phytochemical and enzyme inhibitory effects of different solvent extract of Symphytum anatolicum. Industrial Crops and Products 140: 111666. https://doi.org/10.1016/j.indcrop.2019.111666
Sim Y.Y., Ong W.T.J., Nyam K.L. 2019. Effect of various solvents on the pulsed ultrasonic assisted extraction of phenolic compounds from Hibiscus cannabinus L. leaves. Industrial Crops and Products 140: 111708. https://doi.org/10.1016/j.indcrop.2019.111708
Tebbi S.O., Debbache-Benaida N., Moulaoui K., Zaidi S., Kadi R. 2024. Optimized ultrasonic-assisted deep eutectic solvents extraction of Clematis flammula L. leaves, phytochemical screening, biological activities and the characterization of its volatile compounds. Biomass Conversion and Biorefinery 14: 13277–13291. https://doi.org/10.1007/s13399-022-03585-9
Zeng Y.X., Zhao C.X., Liang Y.Z., Yang H., Fang H.Z., Yi L.Z., Zeng Z.D. 2007. Comparative analysis of volatile components from Clematis species growing in China. Analytica Chimica Acta 595(1-2): 328-339. https://doi.org/10.1016/j.aca.2006.12.022
Zhang Y.M., Zhong G.Y., Zhang P.Z. 2019. Chemical constituents isolated from Clematis akebioides (Maximowicz) Veitch. Biochemical Systematics and Ecology 83: 13-16. https://doi.org/10.1016/j.bse.2018.12.008