Asaduzzaman M., Pratley J.E., Luckett D., Lemerle D., Wu H. 2020. Weed management in canola (
Brassica napus L): A review of current constraints and future strategies for Australia. Archives of Agronomy and Soil Science 66(4): 427-444.
https://doi.org/10.1080/03650340.2019.1624726
Barzan Z., Dehdari M., Amiri Fahliani R. 2015. Study of genetic diversity in rapeseed (Brassica napus L.) genotypes using microsatellite markers. Agricultural Biotechnology Journal 7(1): 29-42.
Bhatt P., Joshi T., Bhatt K., Zhang W., Huang Y., Chen S. 2021. Binding interaction of glyphosate with glyphosate oxidoreductase and C–P lyase: Molecular docking and molecular dynamics simulation studies. Journal of Hazardous Materials 409: 124927.
https://doi.org/10.1016/j.jhazmat.2020.124927
Chmielewska A., Kozłowska M., Rachwał D., Wnukowski P., Amarowicz R., Nebesny E., Rosicka-Kaczmarek J. 2021. Canola/rapeseed protein–nutritional value, functionality and food application: a review. Critical Reviews in Food Science and Nutrition 61(22): 3836-3856.
https://doi.org/10.1080/10408398.2020.1809342
Duke S.O. 2021. Glyphosate: uses other than in glyphosate-resistant crops, mode of action, degradation in plants, and effects on non-target plants and agricultural microbes. Reviews of Environmental Contamination and Toxicology 255: 1-65.
https://doi.org/10.1007/398_2020_53
Gaba S., Gabriel E., Chadœuf J., Bonneu F., Bretagnolle V. 2016. Herbicides do not ensure for higher wheat yield but eliminate rare plant species. Scientific Reports 6: 30112.
https://doi.org/10.1038/srep30112
Gomes M.P., Le Manac’h S.G., Moingt M., Smedbol E., Paquet S., Labrecque M., Lucotte M., Juneau P. 2016. Impact of phosphate on glyphosate uptake and toxicity in willow. Journal of Hazardous Materials 304: 269-279.
https://doi.org/10.1016/j.jhazmat.2015.10.043
Griffin S.L., Chekan J.R., Lira J.M., Robinson A.E., Yerkes C.N., Siehl D.L., Wright T.R., Nair S.K., Cicchillo R.M. 2021. Characterization of a glyphosate-tolerant enzyme from Streptomyces svecius: a distinct class of 5-enolpyruvylshikimate-3-phosphate synthases. Journal of Agricultural and Food Chemistry 69(17): 5096-5104.
https://doi.org/10.1021/acs.jafc.1c00439
Kahrizi D., Salmanian A.H., Afshari A., Moieni A., Mousavi A. 2007. Simultaneous substitution of Gly96 to Ala and Ala183 to Thr in 5-enolpyruvylshikimate-3-phosphate synthase gene of
E. coli (k12) and transformation of rapeseed (
Brassica napus L.) in order to make tolerance to glyphosate. Plant Cell Reports 26(1): 95-104.
https://doi.org/10.1007/s00299-006-0208-4
Leino L., Tall T., Helander M., Saloniemi I., Saikkonen K., Ruuskanen S., Puigbo P. 2021. Classification of the glyphosate target enzyme (5-enolpyruvylshikimate-3-phosphate synthase) for assessing sensitivity of organisms to the herbicide. Journal of Hazardous Materials 408: 124556.
https://doi.org/10.1016/j.jhazmat.2020.124556
Palma-Bautista C., Vázquez-Garcia J.G., López-Valencia G., Domínguez-Valenzuela J.A., Barro F., De Prado R. 2023. Reduced glyphosate movement and mutation of the EPSPS gene (Pro106Ser) endow resistance in conyza canadensis harvested in mexico. Journal of Agricultural and Food Chemistry 71(11): 4477-4487.
https://doi.org/10.1021/acs.jafc.2c07833
Pan L., Yu Q., Wang J., Han H., Mao L., Nyporko A., Maguza A., Fan L., Bai L., Powles S. 2021. An ABCC-type transporter endowing glyphosate resistance in plants. Proceedings of the National Academy of Sciences 118(16): e2100136118.
https://doi.org/10.1073/pnas.2100136118
Roeintan A., Safavi S.M., Kahrizi D. 2022. Rapeseed transformation with aroA bacterial gene containing P101S mutation confers glyphosate resistance. Biochemical Genetics 60(3): 953-968.
https://doi.org/10.1007/s10528-021-10136-w
Tang T., Chen G., Liu F., Bu C., Liu L., Zhao X. 2019. Effects of transgenic glufosinate-tolerant rapeseed (
Brassica napus L.) and the associated herbicide application on rhizospheric bacterial communities. Physiological and Molecular Plant Pathology 106: 246-252.
https://doi.org/10.1016/j.pmpp.2019.03.004