Abdelsalam N.R., Grad W.E., Ghura N.S., Khalid A.E., Ghareeb R.Y., Desoky E.S.M., Rady M.M., Al-Yasi H.M., Ali E.F. 2021. Callus induction and regeneration in sugarcane under drought stress. Saudi Journal of Biological Sciences 28(12): 7432-7442.
https://doi.org/10.1016/j.sjbs.2021.08.047
Aboodeh H., Bakhshandeh A., Moradi Telavat M.R., Siadat S.A., Moosavi S.A. 2024. Evaluation of the effect of interruption of irrigation on protein and seed oil content of rapeseed genotypes. Environmental Stresses in Crop Sciences 16(4): 1089-1103. (In Farsi).
https://doi.org/10.22077/escs.2023.5279.2134
Bajji M., Lutts S., Kinet J.M. 2000. Physiological changes after exposure to and recovery from polyethylene glycol-induced water deficit in callus cultures issued from durum wheat (
Triticum durum Desf.) cultivars differing in drought resistance. Journal of Plant Physiology 156(1): 75-83.
https://doi.org/10.1016/S0176-1617(00)80275-8
Choudhary S., Wani K.I., Naeem M., Khan M.M., Aftab T. 2023. Cellular responses, osmotic adjustments, and role of osmolytes in providing salt stress resilience in higher plants: Polyamines and nitric oxide crosstalk. Journal of Plant Growth Regulation 42(2): 539-553.
https://doi.org/10.1007/s00344-022-10584-7
Errabii T., Gandonou C.B., Essalmani H., Abrini J., Idaomar M., Skali-Senhaji N. 2006. Growth, proline and ion accumulation in sugarcane callus cultures under drought-induced osmotic stress and its subsequent relief. African Journal of Biotechnology 5(16): 1488-1493.
Fletcher L.R., Scoffoni C., Farrell C., Buckley T.N., Pellegrini M., Sack L. 2022. Testing the association of relative growth rate and adaptation to climate across natural ecotypes of Arabidopsis. New Phytologist 236(2): 413-432.
https://doi.org/10.1111/nph.18369
Ghasempour H.R., Hojat Jalali A.A., Rangin A.R. 2007. Physiological changes, proline, total protein, protein analysis and potassium of the sugarbeet plants in response to beet cyst nematodes, Heterodera schachtii. International Journal of Botany 3(1): 91-96.
https://doi.org/10.3923/ijb.2007.91.96
Hayat S., Hayat Q., Alyemeni M.N., Wani A.S., Pichtel J., Ahmad A. 2012. Role of proline under changing environments: a review. Plant Signaling & Behavior 7(11): 1456-1466.
https://doi.org/10.4161/psb.21949
Hoque M.A., Banu M.N.A., Nakamura Y., Shimoishi Y., Murata Y. 2008. Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells. Journal of Plant Physiology 165(8): 813-824.
https://doi.org/10.1016/j.jplph.2007.07.013
Hussain A., Qarshi I.A., Nazir H., Ullah I. 2012. Plant tissue culture: current status and opportunities. Recent Advances in Plant in Vitro Culture. InTech.
https://doi.org/10.5772/50568
Kapoor D., Bhardwaj S., Landi M., Sharma A., Ramakrishnan M., Sharma A. 2020. The impact of drought in plant metabolism: How to exploit tolerance mechanisms to increase crop production. Applied Sciences 10(16): 5692.
https://doi.org/10.3390/app10165692
Kavi Kishor P.B., Sangam S., Amrutha R.N., Laxmi P.S., Naidu K.R., Rao K.S., Rao S., Reddy K.J., Theriappan P., Sreenivasulu N. 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Current Science 88(3): 424-438.
http://www.jstor.org/stable/24110209
Kavi Kishor P.B., Suravajhala P., Rathnagiri P., Sreenivasulu N. 2022. Intriguing role of proline in redox potential conferring high temperature stress tolerance. Frontiers in Plant Science 13: 867531.
https://doi.org/10.3389/fpls.2022.867531
Liu K., Johnson E.N., Blackshaw R.E., Hossain Z., Gan Y. 2019. Improving the productivity and stability of oilseed cropping systems through crop diversification. Field Crops Research 237: 65-73.
https://doi.org/10.1016/j.fcr.2019.03.020
Loveys B.R., Scheurwater I., Pons T.L., Fitter A.H., Atkin O.K. 2002. Growth temperature influences the underlying components of relative growth rate: an investigation using inherently fast‐and slow‐growing plant species. Plant, Cell & Environment 25(8): 975-988.
https://doi.org/10.1046/j.1365-3040.2002.00879.x
Lutts S., Almansouri M., Kinet J.M. 2004. Salinity and water stress have contrasting effects on the relationship between growth and cell viability during and after stress exposure in durum wheat callus. Plant Science 167(1): 9-18.
https://doi.org/10.1016/j.plantsci.2004.02.014
Lutts S., Kinet J.M., Bouharmont J. 1996. Effects of various salts and of mannitol on Ion and proline accumulation in relation to osmotic adjustment in rice (
Oryza sativa L.) callus cultures. Journal of Plant Physiology 149(1-2): 186-195.
https://doi.org/10.1016/S0176-1617(96)80193-3
Mohammadrezakhani S., Rezanejad F., Hajilou J. 2023. Interaction of polyamine and proline on the activity of enzymatic and non-enzymatic compounds in the peel of three
Citrus species under low temperature stress. Journal of Plant Process and Function 11(52): 57-64.
http://dorl.net/dor/20.1001.1.23222727.1401.11.52.6.5
Moradi P. 2016. Key plant products and common mechanisms utilized by plants in water deficit stress responses. Botanical Sciences 94(4): 657-671.
https://doi.org/10.17129/botsci.709
Mullan D., Pietragalla J. 2012. Leaf relative water content. Physiological breeding II: A field guide to wheat phenotyping 25: 25-35.
Okuma E., Soeda K., Fukuda M., Tada M., Murata Y. 2002. Negative correlation between the ratio of K
+ to Na
+ and proline accumulation in tobacco suspension cells. Journal of Soil Science and Plant Nutrition 48(2): 753-757.
https://doi.org/10.1080/00380768.2002.10409266
Pérez-Clemente R.M., Gómez-Cadenas A. 2012. In vitro tissue culture, a tool for the study and breeding of plants subjected to abiotic stress conditions. Recent Advances in Plant In Vitro Culture. InTech.
https://doi.org/10.5772/50671
Rostami Ahmadvandi H., Faghihi A. 2021. Adapted oilseed crops with the ability to grow economically in dryland conditions in Iran. Agrotechniques in Industrial Crops 1(3): 122-128.
https://doi.org/10.22126/atic.2021.6518.1015
Seleiman M.F., Al-Suhaibani N., Ali N., Akmal M., Alotaibi M., Refay Y., Dindaroglu T., Abdul-Wajid H.H., Battaglia M.L. 2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 10(2): 259.
https://doi.org/10.3390/plants10020259
Sharma A., Shahzad B., Kumar V., Kohli S.K., Sidhu G.P., Bali A.S., Handa N., Kapoor D., Bhardwaj R., Zheng B. 2019. Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9(7): 285.
https://doi.org/10.3390/biom9070285
Suprasanna P., Nikalje G.C., Rai A.N. 2016. Osmolyte accumulation and implications in plant abiotic stress tolerance. In: Iqbal N., Nazar R., Khan N. (eds) Osmolytes and plants acclimation to changing environment: Emerging Omics Technologies (pp. 1-12). Springer, New Delhi, India.
https://doi.org/10.1007/978-81-322-2616-1_1