Bates L.S., Waldren R.P., Teare I.D. 1973. Rapid determination of free proline for water-stress studies. Plant and soil 39(1): 205-207.
https://doi.org/10.1007/BF00018060
Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantites of protein utilizing the principles of protein dyebinding. Analytical Biochemistry 72(1-2): 248-254.
https://doi.org/10.1016/0003-2697(76)90527-3
Carakostas M.C., Curry L.L., Boileau A.C., Brusick D.J. 2008. Overview: the history, technical function and safety of rebaudioside A, a naturally occurring steviol glycoside, for use in food and beverages. Food and Chemical Toxicology 46(Suppl 7): S1-S10.
https://doi.org/10.1016/j.fct.2008.05.003
Castro-González C.G., Sánchez-Segura L., Gómez-Merino F.C., Bello-Bello J.J. 2019. Exposure of stevia (
Stevia rebaudiana B.) to silver nanoparticles in vitro: transport and accumulation. Scientific Reports 9(1): 10372.
https://doi.org/10.1038/s41598-019-46828-y
Chen J., Hou K., Qin P., Liu H., Yi B., Yang W., Wu W. 2014. RNA-Seq for gene identification and transcript profiling of three Stevia rebaudiana genotypes. BMC Genomics 15(1): 571.
https://doi.org/10.1186/1471-2164-15-571
Chen Z., Gallie D.R. 2004. The ascorbic acid redox state controls guard cell signaling and stomatal movement. The Plant Cell 16(5): 1143-1162.
https://doi.org/10.1105/tpc.021584
Drewnowski A., Tappy L., Forde C.G., McCrickerd K., Tee E.S., Chan P., Amin L., Trinidad T.P., Amarra M.S. 2019. Sugars and sweeteners: science, innovations, and consumer guidance for Asia. Asia Pacific Journal of Clinical Nutrition 28(3): 645-663.
https://doi.org/10.6133/apjcn.201909_28(3).0025
Ismail T., Ponya Z., Mushtaq A., Masood A. 2020. Stevia a bio sweetener scope in the European Union as a commercial product. American-Eurasian Journal of Sustainable Agriculture 14(2): 23-26.
Javed R., Usman M., Yücesan B., Zia M., Gürel E. 2017. Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of
Stevia rebaudiana Bertoni. Plant Physiology and Biochemistry 110: 94-99.
https://doi.org/10.1016/j.plaphy.2016.05.032
Lemus-Mondaca R., Vega-Gálvez A., Zura-Bravo L., Ah-Hen K. 2012.
Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: A comprehensive review on the biochemical, nutritional and functional aspects. Food Chem 132(3): 1121-1132.
https://doi.org/10.1016/j.foodchem.2011.11.140
Livak K.J., Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 22−ΔΔCT method. Methods 25(4): 402-408.
https://doi.org/10.1006/meth.2001.1262
Makapugay H.C., Nanayakkara N.P.D., Kinghorn A.D. 1984. Improved high-performance liquid chromatographic separation of the
Stevia rebaudiana sweet diterpene glycosides using linear gradient elution. Journal of Chromatography A 283: 390-395.
https://doi.org/10.1016/S0021-9673(00)96278-2
Mirzaei A.R., Shakoory-Moghadam V. 2022. Bioinformatics analysis and pharmacological effect of
Stevia rebaudiana in the prevention of type-2 diabetes. Cellular, Molecular and Biomedical Reports 2(2): 64-73.
https://doi.org/10.55705/cmbr.2022.336232.1035
Nicot N., Hausman J.F., Hoffmann L., Evers D. 2005. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. Journal of Experimental Botany 56(421): 2907-2914.
https://doi.org/10.1093/jxb/eri285
Pawar R.S., Krynitsky A.J., Rader J.I. 2013. Sweeteners from plants--with emphasis on
Stevia rebaudiana (Bertoni) and
Siraitia grosvenorii (Swingle). Analytical and Bioanalytical Chemistry 405(13): 4397-4407.
https://doi.org/10.1007/s00216-012-6693-0
Peteliuk V., Rybchuk L., Bayliak M., Storey K.B., Lushchak O. 2021. Natural sweetener
Stevia rebaudiana: Functionalities, health benefits and potential risks. EXCLI Journal 20: 1412-1430.
https://doi.org/10.17179/excli2021-4211
Rai A., Han S.S. 2022. Critical review on key approaches to enhance synthesis and production of steviol glycosides: a blueprint for zero-calorie sweetener. Applied Sciences 12(17): 8640.
https://doi.org/10.3390/app12178640
Ruiz-Ruiz J.C., Moguel-Ordoñez Y.B., Matus-Basto A.J., Segura-Campos M.R. 2015. Antidiabetic and antioxidant activity of
Stevia rebaudiana extracts (Var. Morita) and their incorporation into a potential functional bread. Journal of Food Science and Technology 52(12): 7894-7903.
https://doi.org/10.1007/s13197-015-1883-3
Simoni S., Vangelisti A., Clemente C., Usai G., Santin M., Ventimiglia M., Mascagni F., Natali L., Angelini L.G., Cavallini A., Tavarini S., Giordani T. 2024. Transcriptomic analyses reveal insights into the shared regulatory network of phenolic compounds and steviol glycosides in
Stevia rebaudiana. International Journal of Molecular Sciences 25(4): 2136.
https://doi.org/10.3390/ijms25042136
Soejarto D.D. 2001. Botany of Stevia and Stevia rebaudiana. CRC Press. 22 p.
Watanabe T., Fujikawa K., Urai S., Iwaki K., Hirai T., Miyagawa K., Uratani H., Yamagaki T., Nagao K., Yokoo Y., Shimamoto K. 2023. Identification, chemical synthesis, and sweetness evaluation of rhamnose or xylose containing steviol glycosides of stevia (
Stevia rebaudiana) leaves. Journal of Agricultural and Food Chemistry 71(29): 11158-11169.
https://doi.org/10.1021/acs.jafc.3c01753
Yang Y.H., Huang S.Z., Han Y.L., Yuan H.Y., Gu C.S., Zhao Y.H. 2014. Base substitution mutations in uridinediphosphate-dependent glycosyltransferase 76G1 gene of Stevia rebaudiana causes the low levels of rebaudioside A: mutations in UGT76G1, a key gene of steviol glycosides synthesis. Plant Physiology and Biochemistry 80: 220-225.
https://doi.org/10.1016/j.plaphy.2014.04.005
Zhang S.S., Chen H., Xiao J.Y., Liu Q., Xiao R.F., Wu W. 2019. Mutations in the uridine diphosphate glucosyltransferase 76G1 gene result in different contents of the major steviol glycosides in Stevia rebaudiana. Phytochemistry 162: 141-147.
https://doi.org/10.1016/j.phytochem.2019.03.008