Investigating the Physiological Responses and the Expression of Effective Genes in Steviol Glycosides Production in Stevia (Stevia rebaudiana)

Document Type : Original Article

Authors

1 Department of Horticulture, Faculty of Agriculture, Herat University, Herat, Afghanistan

2 Department of Forestry and Natural Resource, Faculty of Agriculture, Herat University, Herat, Afghanistan

3 Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran

4 Sivas Cumhuriyet University, Sivas Technical Sciences Vocational School, Department of Crop and Animal Production, Sivas, Turkey

Abstract

Stevia plant is one of the most important medicinal plants used to control diabetes due to its sweetening properties and low calories. Stevia is cultivated in many parts of the world, and to increase its sweetening properties, the effects of many different factors have been tested on this plant. In this research, we investigated the effect of elements related to metal oxidants on the induction of molecular levels and transcription. Thus, the activity of 3 key genes named CPPS, HDS, and GGDPS in response to six different metal oxidants named Cro3, Pbo, Fe2O3, Ag2O, Bao, and Tio2 was carried out in this research. The results showed that the increased concentration of metal oxides, especially Fe2O3 and TiO2, escalates gene expression in the biosynthesis of sweeteners extracted from stevia leaves. Also, related to all treatments, the higher the concentration, the higher the gene expression. Among all metal oxide treatments, Pbo and Bao resulted in low gene expression for CPPS, HDS, and GGDPS genes. On the other side, control showed the lowest expression regarding all three surveyed genes, indicating that using metal oxides can achieve higher production of sweeteners in stevia plants. The results of this research determined that physiological characteristics are affected by metal oxide treatments. Also, the expression of genes effective in the production of steviol glycosides, which is one of the important sweetening factors of this plant in the leaves, increases under the influence of these treatments. As a result, it can be said that the use of these treatments can have an increasing effect on the amount of sweetening of the plant.

Graphical Abstract

Investigating the Physiological Responses and the Expression of Effective Genes in Steviol Glycosides Production in Stevia (Stevia rebaudiana)

Highlights

  • Various treatments of metal oxides were administered to the plant at the 5-leaf stage.
  • Physiological traits of the plant were examined following the application of metal oxide treatments.
  • Gene expression analysis related to steviol glycoside production was conducted under the influence of the treatments.
  • Research findings validated the beneficial impact of metal oxide treatments on enhancing the sweetening attributes of the plant.

Keywords

Main Subjects


Arnon D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology 24(1): 1-15. https://doi.org/10.1104/pp.24.1.1
Baroni-Nezhad H., Karimi M., Motaghian H., Direkvand-Moghadam F. 2021. Response of stevia (Stevia rebaudiana) to copper, iron and zinc. Journal of Plant Nutrition 44(6): 875-884. https://doi.org/10.1080/01904167.2021.1871753
Bates L.S., Waldren R.P., Teare I.D. 1973. Rapid determination of free proline for water-stress studies. Plant and soil 39(1): 205-207. https://doi.org/10.1007/BF00018060
Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantites of protein utilizing the principles of protein dyebinding. Analytical Biochemistry 72(1-2): 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Carakostas M.C., Curry L.L., Boileau A.C., Brusick D.J. 2008. Overview: the history, technical function and safety of rebaudioside A, a naturally occurring steviol glycoside, for use in food and beverages. Food and Chemical Toxicology 46(Suppl 7): S1-S10. https://doi.org/10.1016/j.fct.2008.05.003
Castro-González C.G., Sánchez-Segura L., Gómez-Merino F.C., Bello-Bello J.J. 2019. Exposure of stevia (Stevia rebaudiana B.) to silver nanoparticles in vitro: transport and accumulation. Scientific Reports 9(1): 10372. https://doi.org/10.1038/s41598-019-46828-y
Chen J., Hou K., Qin P., Liu H., Yi B., Yang W., Wu W. 2014. RNA-Seq for gene identification and transcript profiling of three Stevia rebaudiana genotypes. BMC Genomics 15(1): 571.‏ https://doi.org/10.1186/1471-2164-15-571
Chen Z., Gallie D.R. 2004. The ascorbic acid redox state controls guard cell signaling and stomatal movement. The Plant Cell 16(5): 1143-1162. https://doi.org/10.1105/tpc.021584
Drewnowski A., Tappy L., Forde C.G., McCrickerd K., Tee E.S., Chan P., Amin L., Trinidad T.P., Amarra M.S. 2019. Sugars and sweeteners: science, innovations, and consumer guidance for Asia. Asia Pacific Journal of Clinical Nutrition 28(3): 645-663. https://doi.org/10.6133/apjcn.201909_28(3).0025
Ismail T., Ponya Z., Mushtaq A., Masood A. 2020. Stevia a bio sweetener scope in the European Union as a commercial product. American-Eurasian Journal of Sustainable Agriculture 14(2): 23-26.
Javed R., Usman M., Yücesan B., Zia M., Gürel E. 2017. Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of Stevia rebaudiana Bertoni. Plant Physiology and Biochemistry 110: 94-99. https://doi.org/10.1016/j.plaphy.2016.05.032
Larionov A., Krause A., Miller W. 2005. A standard curve based method for relative real time PCR data processing. BMC Bioinformatics 6(1): 62. https://doi.org/10.1186/1471-2105-6-62
Lemus-Mondaca R., Vega-Gálvez A., Zura-Bravo L., Ah-Hen K. 2012. Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: A comprehensive review on the biochemical, nutritional and functional aspects. Food Chem 132(3): 1121-1132. https://doi.org/10.1016/j.foodchem.2011.11.140
Lichtenthaler H.K. 1987. [34] Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology. Academic Press 148: 350-382. https://doi.org/10.1016/0076-6879(87)48036-1
Livak K.J., Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 22−ΔΔCT method. Methods 25(4): 402-408. https://doi.org/10.1006/meth.2001.1262
Makapugay H.C., Nanayakkara N.P.D., Kinghorn A.D. 1984. Improved high-performance liquid chromatographic separation of the Stevia rebaudiana sweet diterpene glycosides using linear gradient elution. Journal of Chromatography A 283: 390-395. https://doi.org/10.1016/S0021-9673(00)96278-2
Mirzaei A.R., Shakoory-Moghadam V. 2022. Bioinformatics analysis and pharmacological effect of Stevia rebaudiana in the prevention of type-2 diabetes. Cellular, Molecular and Biomedical Reports 2(2): 64-73. https://doi.org/10.55705/cmbr.2022.336232.1035
Nicot N., Hausman J.F., Hoffmann L., Evers D. 2005. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. Journal of Experimental Botany 56(421): 2907-2914. https://doi.org/10.1093/jxb/eri285
Pawar R.S., Krynitsky A.J., Rader J.I. 2013. Sweeteners from plants--with emphasis on Stevia rebaudiana (Bertoni) and Siraitia grosvenorii (Swingle). Analytical and Bioanalytical Chemistry 405(13): 4397-4407. https://doi.org/10.1007/s00216-012-6693-0
Peteliuk V., Rybchuk L., Bayliak M., Storey K.B., Lushchak O. 2021. Natural sweetener Stevia rebaudiana: Functionalities, health benefits and potential risks. EXCLI Journal 20: 1412-1430. https://doi.org/10.17179/excli2021-4211
Rai A., Han S.S. 2022. Critical review on key approaches to enhance synthesis and production of steviol glycosides: a blueprint for zero-calorie sweetener. Applied Sciences 12(17): 8640. https://doi.org/10.3390/app12178640
Ramesh K., Singh V., Megeji N.W. 2006. Cultivation of stevia [Stevia rebaudiana (Bert.) Bertoni]: A comprehensive review. Advances in Agronomy 89: 137-177. https://doi.org/10.1016/S0065-2113(05)89003-0
Ross J., Li Y., Lim E.K., Bowles D.J. 2001. Higher plant glycosyltransferases. Genome Biology 2(2): 1-6. https://doi.org/10.1186/gb-2001-2-2-reviews3004
Ruiz-Ruiz J.C., Moguel-Ordoñez Y.B., Matus-Basto A.J., Segura-Campos M.R. 2015. Antidiabetic and antioxidant activity of Stevia rebaudiana extracts (Var. Morita) and their incorporation into a potential functional bread. Journal of Food Science and Technology 52(12): 7894-7903. https://doi.org/10.1007/s13197-015-1883-3
Schlegel H.G. 1956. Die verwertung organischer sauren durch chlorella in lincht. Planta 47: 510-526. https://doi.org/10.1007/BF01935418
Simoni S., Vangelisti A., Clemente C., Usai G., Santin M., Ventimiglia M., Mascagni F., Natali L., Angelini L.G., Cavallini A., Tavarini S., Giordani T. 2024. Transcriptomic analyses reveal insights into the shared regulatory network of phenolic compounds and steviol glycosides in Stevia rebaudiana. International Journal of Molecular Sciences 25(4): 2136. https://doi.org/10.3390/ijms25042136
Soejarto D.D. 2001. Botany of Stevia and Stevia rebaudiana. CRC Press. 22 p.
Watanabe T., Fujikawa K., Urai S., Iwaki K., Hirai T., Miyagawa K., Uratani H., Yamagaki T., Nagao K., Yokoo Y., Shimamoto K. 2023. Identification, chemical synthesis, and sweetness evaluation of rhamnose or xylose containing steviol glycosides of stevia (Stevia rebaudiana) leaves. Journal of Agricultural and Food Chemistry 71(29): 11158-11169. https://doi.org/10.1021/acs.jafc.3c01753 
Yang Y.H., Huang S.Z., Han Y.L., Yuan H.Y., Gu C.S., Zhao Y.H. 2014. Base substitution mutations in uridinediphosphate-dependent glycosyltransferase 76G1 gene of Stevia rebaudiana causes the low levels of rebaudioside A: mutations in UGT76G1, a key gene of steviol glycosides synthesis. Plant Physiology and Biochemistry 80: 220-225. https://doi.org/10.1016/j.plaphy.2014.04.005
Zhang S.S., Chen H., Xiao J.Y., Liu Q., Xiao R.F., Wu W. 2019. Mutations in the uridine diphosphate glucosyltransferase 76G1 gene result in different contents of the major steviol glycosides in Stevia rebaudiana. Phytochemistry 162: 141-147. https://doi.org/10.1016/j.phytochem.2019.03.008