Araghi S.G., Assad M.T. 1998. Evaluation of four screening techniques for drought resistance and their relationship to yield reduction ratio in wheat. Euphytica 103(3): 293-299.
https://doi.org/10.1023/A:1018307111569
Arif A., Parveen N., Waheed M.Q., Atif R.M., Waqar I., Shah T.M. 2021. A comparative study for assessing the drought-tolerance of chickpea under varying natural growth environments. Frontiers in Plant Science 11: 607869.
https://doi.org/10.3389/fpls.2020.607869
Arriagada O., Cacciuttolo F., Cabeza R.A., Carrasco B., Schwember A.R. 2022. A comprehensive review on chickpea (
Cicer arietinum L.) breeding for abiotic stress tolerance and climate change resilience. International Journal of Molecular Sciences 23(12): 6794.
https://doi.org/10.3390/ijms23126794
Barrs H., Weatherley P. 1962. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences 15(3): 413-428.
http://dx.doi.org/10.1071/BI9620413
Bibi N., Hameed A., Ali H., Iqbal N., Haq M., Atta B., Shah T., Alam S.S. 2009. Water stress induced variations in protein profiles of germinating cotylodons from seedlings of chickpeas genotypes. Pakistan Journal of Botany 41(2): 731-736.
http://pakbs.org/pjbot/PDFs/41(2)/PJB41(2)731.pdf
Canci H., Toker C. 2009a. Evaluation of annual wild Cicer species for drought and heat resistance under field conditions. Genetic Resources and Crop Evolution 56(1): 1.
https://doi.org/10.1007/s10722-008-9335-9
Cutforth H., Angadi S., McConkey B., Miller P., Ulrich D., Gulden R., Volkmar K., Entz M., Brandt S. 2013. Comparing rooting characteristics and soil water withdrawal patterns of wheat with alternative oilseed and pulse crops grown in the semiarid Canadian prairie. Canadian Journal of Soil Science 93(2): 147-160.
https://doi.org/10.4141/cjss2012-081
Daws M.I., Crabtree L.M., Dalling J.W., Mullins C.E., Burslem D.F. 2008. Germination responses to water potential in neotropical pioneers suggest large-seeded species take more risks. Annals of Botany 102(6): 945-951.
https://doi.org/10.1093/aob/mcn186
Denčić S., Kastori R., Kobiljski B., Duggan B. 2000. Evaluation of grain yield and its components in wheat cultivars and landraces under near optimal and drought conditions. Euphytica 113(1): 43-52.
https://doi.org/10.1023/A:1003997700865
Fahad S., Bajwa A.A., Nazir U., Anjum S.A., Farooq A., Zohaib A., Sadia S., Nasim W., Adkins S., Saud S., Ihsan M.Z., Alharby H., Wu C., Wang D., Huang J. 2017. Crop production under drought and heat stress: plant responses and management options. Frontiers in Plant Science 8: 1147.
https://doi.org/10.3389/fpls.2017.01147
Farooq M., Wahid A., Basra S., Shahzad I.D. 2009. Improving water relations and gas exchange with brassinosteroids in rice under drought stress. Journal of Agronomy and Crop Science 195(4): 262-269.
https://doi.org/10.1111/j.1439-037X.2009.00368.x
Filippou P., Antoniou C., Fotopoulos V. 2013. The nitric oxide donor sodium nitroprusside regulates polyamine and proline metabolism in leaves of
Medicago truncatula plants. Free Radical Biology and Medicine 56: 172-183.
https://doi.org/10.1016/j.freeradbiomed.2012.09.037
Ganjeali A., Porsa H., Bagheri A. 2011. Assessment of Iranian chickpea (
Cicer arietinum L.) germplasms for drought tolerance. Agricultural Water Management 98(9): 1477-1484.
https://doi.org/10.1016/j.agwat.2011.04.017
Gaur P.M., Jukanti A.K., Samineni S., Chaturvedi S.K., Basu P.S., Babbar A., Jayalakshmi V., Nayyar H., Devasirvatham V., Mallikarjuna N., Krishnamurthy L. 2013. Climate change and heat stress tolerance in chickpea. Climate Change and Plant Abiotic Stress Tolerance 18: 837-856.
https://doi.org/10.1002/9783527675265.ch31
Hosseinzadeh S., Amiri H., Ismaili A. 2016. Effect of vermicompost fertilizer on photosynthetic characteristics of chickpea (
Cicer arietinum L.) under drought stress. Photosynthetica 54(1): 87-92.
https://doi.org/10.1007/s11099-015-0162-x
Hosseinzadeh S.R., Amiri H., Ismaili A. 2018. Evaluation of photosynthesis, physiological, and biochemical responses of chickpea (
Cicer arietinum L. cv. Pirouz) under water deficit stress and use of vermicompost fertilizer. Journal of Integrative Agriculture 17(11): 2426-2437.
https://doi.org/10.1016/S2095-3119(17)61874-4
Hussain N., Aslam M., Ghaffar A., Irshad M., Din N.U. 2015. Chickpea genotypes evaluation for morpho-yield traits under water stress conditions. Journal of Animal & Plant Sciences 25(1): 206.
Joseph B., Jini D. 2011. Development of salt stress-tolerant plants by gene manipulation of antioxidant enzymes. Asian Journal of Agricultural Research 5(1): 17-27.
http://dx.doi.org/10.3923/ajar.2011.17.27
Kakaei M., Rehman F.U., Fazeli F. 2024. The effect of chickpeas metabolites on human diseases and the application of their valuable nutritional compounds suitable for human consumption. Cellular, Molecular and Biomedical Reports 4(1): 30-42.
https://doi.org/10.55705/cmbr.2023.395591.1153
Kashiwagi J., Krishnamurthy L., Crouch J., Serraj R. 2006. Variability of root length density and its contributions to seed yield in chickpea (
Cicer arietinum L.) under terminal drought stress. Field Crops Research 95(2-3): 171-181.
https://doi.org/10.1016/j.fcr.2005.02.012
Katerji N., Van Hoorn J.W., Hamdy A., Mastrorilli M., Oweis T., Malhotra R.S. 2001. Response to soil salinity of two chickpea varieties differing in drought tolerance. Agricultural Water Management 50(2): 83-96.
https://doi.org/10.1016/S0378-3774(01)00107-X
Kaur D., Grewal S., Kaur J., Singh S. 2017. Differential proline metabolism in vegetative and reproductive tissues determine drought tolerance in chickpea. Biologia Plantarum 61(2): 359-366.
https://doi.org/10.1007/s10535-016-0695-2
Keerthi Sree Y., Lakra N., Manorama K., Ahlawat Y., Zaid A., Elansary H.O., Sayed S.R., Rashwan M.A., Mahmoud E.A. 2023. Drought-induced morpho-physiological, biochemical, metabolite responses and protein profiling of chickpea (
Cicer arietinum L.). Agronomy 13(7): 1814.
https://doi.org/10.3390/agronomy13071814
Khan M.I.R., Asgher M., Fatma M., Per T.S., Khan N.A. 2015. Drought stress vis a vis plant functions in the era of climate change. Climate Change and Environmental Sustainability 3(1): 13-25.
http://dx.doi.org/10.5958/2320-642X.2015.00002.2
Kumar N., Nandwal A.S., Waldia R.S., Singh S., Devi S., Sharma K.D., Kumar A. 2012. Drought tolerance in chickpea as evaluated by root characteristics, plant water status, membrane integrity and chlorophyll fluorescence techniques. Experimental Agriculture 48(3): 378-387.
https://doi.org/10.1017/S0014479712000063
Lokhande P.K., Naik R.M., Dalvi U.S., Mhase L.B., Harer P.N. 2019. Antioxidative and root attributes response of chickpea parents and crosses under drought stress. Legume Research-An International Journal 42(3): 320-325.
http://dx.doi.org/10.18805/LR-4031
Mantel N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Research 27(2 Part 1): 209-220.
Maqbool M.A., Aslam M., Ali H. 2017. Breeding for improved drought tolerance in Chickpea (
Cicer arietinum L.). Plant Breeding 136(3): 300-318.
https://doi.org/10.1111/pbr.12477
Mukherjee S., Choudhuri M. 1983. Implications of water stress‐induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiologia Plantarum 58(2): 166-170.
https://doi.org/10.1111/j.1399-3054.1983.tb04162.x
Pouresmael M., Khavari-Nejad R.A., Mozafari J., Najafi F., Moradi F. 2013. Efficiency of screening criteria for drought tolerance in chickpea. Archives of Agronomy and Soil Science 59(12): 1675-1693.
https://doi.org/10.1080/03650340.2012.758361
Pundir R.P.S., Rao N.K., van den Maesen L.J.G. 1985. Distribution of qualitative traits in the world germplasm of chickpea (
Cicer arietinum L.). Euphytica 34(3): 697-703.
https://doi.org/10.1007/BF00035406
Rahbarian R., Khavari-Nejad R., Ganjeali A., Bagheri A., Najafi F. 2011. Drought stress effects on photosynthesis, chlorophyll fluorescence and water relations in tolerant and susceptible chickpea (
Cicer arietinum L.) genotypes. Acta biologica Cracoviensia. Series botânica 53(1): 47-56.
https://doi.org/10.2478/v10182-011-0007-2
Ramamoorthy P., Lakshmanan K., Upadhyaya H.D., Vadez V., Varshney R.K. 2016. Shoot traits and their relevance in terminal drought tolerance of chickpea (
Cicer arietinum L.). Field Crops Research 197: 10-27.
https://doi.org/10.1016/j.fcr.2016.07.016
Ramamoorthy P., Lakshmanan K., Upadhyaya H.D., Vadez V., Varshney R.K. 2017. Root traits confer grain yield advantages under terminal drought in chickpea (
Cicer arietinum L.). Field Crops Research 201: 146-161.
https://doi.org/10.1016/j.fcr.2016.11.004
Randhawa N., Kaur J., Singh S., Singh I. 2014. Growth and yield in chickpea (
Cicer arietinum L.) genotypes in response to water stress. African Journal of Agricultural Research 9(11): 982-992.
https://doi.org/10.5897/AJAR2013.7671
Rohlf F. 2000. NTSYS 2.1: numerical taxonomic and multivariate analysis system. New York, Exeter Software.
Sairam R. 1994. Effect of moisture-stress on physiological activities of two contrasting wheat genotypes. Indian Journal of Experimental Biology 32: 594-594.
Sani S.G., Chang P.L., Zubair A., Carrasquilla‐Garcia N., Cordeiro M., Penmetsa R.V., Munis M.F., Nuzhdin S.V., Cook D.R., von Wettberg E.J. 2018. Genetic diversity, population structure, and genetic correlation with climatic variation in chickpea (
Cicer arietinum) landraces from Pakistan. The Plant Genome 11(1): 170067.
https://doi.org/10.3835/plantgenome2017.08.0067
Serraj R., Krishnamurthy L., Kashiwagi J., Kumar J., Chandra S., Crouch J. 2004. Variation in root traits of chickpea (
Cicer arietinum L.) grown under terminal drought. Field Crops Research 88(2-3): 115-127.
https://doi.org/10.1016/j.fcr.2003.12.001
Shah T.M., Imran M., Atta B.M., Ashraf M.Y., Hameed A., Waqar I., Shafiq M., Hussain K., Naveed M., Aslam M. 2020. Selection and screening of drought tolerant high yielding chickpea genotypes based on physio-biochemical indices and multi-environmental yield trials. BMC Plant Biology 20: 171.
https://doi.org/10.1186/s12870-020-02381-9
Soltani A., Gholipoor M., Zeinali E. 2006. Seed reserve utilization and seedling growth of wheat as affected by drought and salinity. Environmental and Experimental Botany 55(1-2): 195-200.
https://doi.org/10.1016/j.envexpbot.2004.10.012
Talebi R., Ensafi M.H., Baghebani N., Karami E., Mohammadi K. 2013. Physiological responses of chickpea (Cicer arietinum) genotypes to drought stress. Environmental and Experimental Biology 11: 9-15.
Varshney R.K., Pazhamala L., Kashiwagi J., Gaur P.M., Krishnamurthy L., Hoisington D. 2011. Genomics and physiological approaches for root trait breeding to improve drought tolerance in chickpea (Cicer arietinum L.) Root genomics (pp. 233-250). Springer.
Varshney R.K., Thudi M., Nayak S.N., Gaur P.M., Kashiwagi J., Krishnamurthy L., Jaganathan D., Koppolu J., Bohra A., Tripathi S., Rathore A., Jukanti A.K., Jayalakshmi V., Vemula A., Singh S.J., Yasin M., Sheshshayee M.S., Viswanatha K.P. 2014. Genetic dissection of drought tolerance in chickpea (
Cicer arietinum L.). Theoretical and Applied Genetics 127(2): 445-462.
https://doi.org/10.1007/s00122-013-2230-6