Al Akeel R., Al-Sheikh Y., Mateen A., Syed R., Janardhan K., Gupta V.C. 2014. Evaluation of antibacterial activity of crude protein extracts from seeds of six different medical plants against standard bacterial strains. Saudi Journal of Biological Sciences 21(2): 147-151.
https://doi.org/10.1016/j.sjbs.2013.09.003
Bin C., Al-Dhabi N.A., Esmail G.A., Arokiyaraj S., Arasu M.V. 2020. Potential effect of
Allium sativum bulb for the treatment of biofilm forming clinical pathogens recovered from periodontal and dental caries. Saudi Journal of Biological Sciences 27(6): 1428-1434.
https://doi.org/10.1016/j.sjbs.2020.03.025
Brown L., Wolf J.M., Prados-Rosales R., Casadevall A. 2015. Through the wall: Extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nature Reviews Microbiology 13(10): 620-630.
https://doi.org/10.1038/nrmicro3480
Chung C.R., Kuo T.R., Wu L.C., Lee T.Y., Horng J.T. 2020. Characterization and identification of antimicrobial peptides with different functional activities. Briefings in Bioinformatics 21(3): 1098-1114.
https://doi.org/10.1093/bib/bbz043
Dong J., Ding X., Wang S. 2019. Purification of the recombinant green fluorescent protein from tobacco plants using alcohol/salt aqueous two-phase system and hydrophobic interaction chromatography. BMC Biotechnology 19(1): 1-8.
https://doi.org/10.1186/s12896-019-0590-y
Drira M., Ghanmi S., Zaidi I., Brini F., Miled N., Hanin M. 2023. The heat‐stable protein fraction from Opuntia ficus‐indica seeds exhibits an enzyme protective effect against thermal denaturation and antibacterial activity. Biotechnology and Applied Biochemistry 70(2): 593-602.
https://doi.org/10.1002/bab.2382
Farha S., Chatterjee E., Manuel S.G., Reddy S.A., Kale R.D. 2012. Isolation and characterization of bioactive compounds from fruit wastes. Dynamic Biochemistry, Process Biotechnology and Molecular Biology 6: 92-94.
Gajic I., Kabic J., Kekic D., Jovicevic M., Milenkovic M., Mitic Culafic D., Trudic A., Ranin L., Opavski N. 2022. Antimicrobial susceptibility testing: A comprehensive review of currently used methods. Antibiotics 11(4): 427.
https://doi.org/10.3390/antibiotics11040427
Gan B.H., Gaynord J., Rowe S.M., Deingruber T., Spring D.R. 2021. The multifaceted nature of antimicrobial peptides: Current synthetic chemistry approaches and future directions. Chemical Society Reviews 50(13): 7820-7880.
https://doi.org/10.1039/D0CS00729C
Kaur S., Samota M.K., Choudhary M., Choudhary M., Pandey A.K., Sharma A., Thakur J. 2022. How do plants defend themselves against pathogens-Biochemical mechanisms and genetic interventions. Physiology and Molecular Biology of Plants 28(2): 485-504.
https://doi.org/10.1007/s12298-022-01146-y
Kowalska-Krochmal B., Dudek-Wicher R. 2021. The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens 10(2): 165.
https://doi.org/10.3390/pathogens10020165
Liu J., Nothias L.F., Dorrestein P.C., Tahlan K., Bignell D.R. 2021. Genomic and metabolomic analysis of the potato common scab pathogen
Streptomyces Scabiei. ACS Omega 6(17): 11474-11487.
https://doi.org/10.1021/acsomega.1c00526
Manjula A.C., Shubha. 2011. Screening of antibacterial activity of total soluble protein of mulberry varieties. International Journal of Current Pharmaceutical Research 3(2): 60-61.
Mirzaei Najafgholi H., Narimani S., Aeini M., Taghavi S.M., Tarighi S., Javaheri M. 2015. Investigation the performance and biological control of the various tomato cultivars against the bacterial wilt disease (
Ralstonia solanacearum). Biocontrol in Plant Protection 2(2): 47-57. (In Farsi).
https://doi.org/10.22092/bcpp.2015.103000
Mortazavi S.H., Azadmard Damirchi S., Sowti M., Mahmudi R., Safaeean F., Moradi Azad S. 2014. Antimicrobial Effects of ethanolic extract of the hull and the core of
Pistacia khinjuk stocks. Innovative Food Technologies 1(4): 81-88. (In Farsi).
https://doi.org/10.22104/jift.2014.46
Moussa Z., Rashad E.M., Elsherbiny E.A., Al-Askar A.A., Arishi A.A., Al-Otibi F.O., Saber W.I. 2022. New strategy for inducing resistance against bacterial wilt disease using an avirulent strain of
Ralstonia solanacearum. Microorganisms 10(9): 1814.
https://doi.org/10.3390/microorganisms10091814
Nazarov P.A., Baleev D.N., Ivanova M.I., Sokolova L.M., Karakozova M.V. 2020. Infectious plant diseases: Etiology, current status, problems and prospects in plant protection. Acta Naturae 12(3): 46.
https://doi.org/10.32607%2Factanaturae.11026
Nourbakhsh F., Rezaei S. 2012. Heat shock proteins (HSPs). Andishe-Sara Press. 120 p. (in Farsi)
Park H., Yamanaka T., Nukina N. 2022. Proteomic analysis of heat-stable proteins revealed an increased proportion of proteins with compositionally biased regions. Scientific Reports 12(1): 4347.
https://doi.org/10.1038/s41598-022-08044-z
Pasquina-Lemonche L., Burns J., Turner R.D., Kumar S., Tank R., Mullin N., Wilson J.S., Chakrabarti B., Bullough P.A., Foster S.J., Hobbs J.K. 2020. The architecture of the Gram-positive bacterial cell wall. Nature 582(7811): 294-297.
https://doi.org/10.1038/s41586-020-2236-6
Sarkar T., Chetia M., Chatterjee S. 2021. Antimicrobial peptides and proteins: From nature’s reservoir to the laboratory and beyond. Frontiers in Chemistry 9: 691532.
https://doi.org/10.3389/fchem.2021.691532
ul Haq S., Khan A., Ali M., Khattak A.M., Gai W.X., Zhang H.X., Wei A.M., Gong Z.H. 2019. Heat shock proteins: dynamic biomolecules to counter plant biotic and abiotic stresses. International journal of molecular sciences 20(21): 5321.
https://doi.org/10.3390/ijms20215321
Wang W., Vinocur B., Shoseyov O., Altman A. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science 9(5): 244-252.
https://doi.org/10.1016/j.tplants.2004.03.006