Unveiling the Synergistic Effects of Melatonin and Zinc on Enhancing Yield and Yield Components of Mung Bean (Vigna radiata L.) under Field Condition

Document Type : Original Article

Authors

1 Department of Plant Production and Genetics, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Iran

2 Safiabad Agriculture Research Centre, Dezful, Iran

Abstract

The city of Gotvand in Iran is located in a hot and semi-arid region, where it can be challenging to grow crops. Abiotic stresses such as drought and heat can affect crop productivity during both vegetative and reproductive growth. Melatonin plays a vital role in regulating various mechanisms in plants and acts as a primary defense against environmental stresses. However, its interaction with zinc is not well understood. In the experiment, a randomized complete block design with three repetitions was used. A field experiment was conducted to investigate the interaction effects of zinc fertilizer (ZnSO4) - no application, 1 mg/L, and 2 mg/L and different concentrations of melatonin (0, 25,  50, 100, 200 mg/L. Mung bean plants treated with melatonin and higher levels of zinc fertilizer showed increased vegetative growth and improved yield attributes. The specific combination of 200 mg/L of melatonin and 2 mg/L of zinc fertilizer emerges as a promising strategy to maximize yield components, including pod number, seed number per pod, and seed weight. Notably, this combination proved to be the most effective treatment for enhancing mung bean yield formation which resulted in the highest average seed yield to 1764 kg/ha. It is concluded that melatonin and zinc combination is an effective approach to alleviate environmental challenges such as high temperatures during fluorescence and reproductive growth.

Graphical Abstract

Unveiling the Synergistic Effects of Melatonin and Zinc on Enhancing Yield and Yield Components of Mung Bean (Vigna radiata L.) under Field Condition

Highlights

  • Melatonin application increases mung bean yield and yield components.
  • Adding zinc fertilizer to the soil promotes vegetative growth and enhances photosynthesis in mung bean plants, as shown by increased leaf dry weight.

Keywords

Main Subjects


Ahmad S., Su W., Kamran M., Ahmad I., Meng X., Wu X., Javed T., Han Q. 2020. Foliar application of melatonin delay leaf senescence in maize by improving the antioxidant defense system and enhancing photosynthetic capacity under semi-arid regions. Protoplasma 257(4): 1079-1092. https://doi.org/10.1007/s00709-020-01491-3
Ahmed R., Uddin M.K., Quddus M.A., Samad M.Y.A., Hossain M.A., Haque A.N.A. 2023. Impact of foliar application of zinc and zinc oxide nanoparticles on growth, yield, nutrient uptake and quality of tomato. Horticulturae 9(2): 162. https://doi.org/10.3390/horticulturae9020162
Annadurai M.K.K., Alagarsamy S., Karuppasami K.M., Ramakrishnan S., Subramanian M., Venugopal P.R.B., Muthurajan R., Vellingiri G., Dhashnamurthi V., Veerasamy R. 2023. Melatonin decreases negative effects of combined drought and high temperature stresses through enhanced antioxidant defense system in tomato leaves. Horticulturae 9(6): 673. https://doi.org/10.3390/horticulturae9060673
Antoniou C., Chatzimichail G., Xenofontos R., Pavlou J.J., Panagiotou E., Christou A., Fotopoulos V. 2017. Melatonin systemically ameliorates drought stress‐induced damage in Medicago sativa plants by modulating nitro‐oxidative homeostasis and proline metabolism. Journal of Pineal Research 62(4): e12401. https://doi.org/10.1111/jpi.12401
Arnao M.B., Hernández‐Ruiz J. 2007. Melatonin promotes adventitious‐and lateral root regeneration in etiolated hypocotyls of Lupinus albus L. Journal of Pineal Research 42(2): 147-152. https://doi.org/10.1111/j.1600-079X.2006.00396.x
Arnao M.B., Hernández-Ruiz J. 2018. Melatonin and its relationship to plant hormones. Annals of Botany 121(2): 195-207. https://doi.org/10.1093/aob/mcx114  
Arnao M.B., Hernández‐Ruiz J. 2021. Melatonin as a regulatory hub of plant hormone levels and action in stress situations. Plant Biology 23(S1): 7-19. https://doi.org/10.1111/plb.13202
Cakmak I. 2009. Enrichment of fertilizers with zinc: An excellent investment for humanity and crop production in India. Journal of Trace Elements in Medicine and Biology 23(4): 281-289. https://doi.org/10.1016/j.jtemb.2009.05.002
Chen F., Li Y., Zia-ur-Rehman M., Hussain S.M., Qayyum M.F., Rizwan M., Alharby H.F., Alabdallah N.M., Alharbi B.M., Ali S. 2023. Combined effects of zinc oxide nanoparticles and melatonin on wheat growth, chlorophyll contents, cadmium (Cd) and zinc uptake under Cd stress. Science of The Total Environment 864: 161061. https://doi.org/10.1016/j.scitotenv.2022.161061
Chen Q., Qi W.B., Reiter R.J., Wei W., Wang B.M. 2009. Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. Journal of Plant Physiology 166(3): 324-328. https://doi.org/10.1016/j.jplph.2008.06.002
Copeland L. 2011. Meeting the challenges for agriculture. Agriculture 1(1): 1. https://doi.org/10.3390/agriculture1010001
Golovatskaya I.F., Laptev N.I. 2023. Chapter 2 - Effect of UV-B radiation on plants growth, active constituents, and productivity. In Husen A (Ed.), Plants and Their Interaction to Environmental Pollution (pp. 25-60): Elsevier. https://doi.org/10.1016/B978-0-323-99978-6.00024-8
Gu Q., Xiao Q., Chen Z., Han Y. 2022. Crosstalk between melatonin and reactive oxygen species in plant abiotic stress responses: an update. International Journal of Molecular Sciences 23(10): 5666. https://doi.org/10.3390/ijms23105666
Han X., Li X., Uren N., Tang C. 2011. Zinc fractions and availability to soybeans in representative soils of Northeast China. Journal of soils and sediments 11: 596-606. http://dx.doi.org/10.1007/s11368-011-0336-5
Hou D., Yousaf L., Xue Y., Hu J., Wu J., Hu X., Feng N., Shen Q. 2019. Mung bean (Vigna radiata L.): Bioactive polyphenols, polysaccharides, peptides, and health benefits. Nutrients 11(6): 1238. https://doi.org/10.3390%2Fnu11061238 
Jaya I.K., Sudika I.W. 2021. Mung bean cover crop improved soil organic carbon and maize yield in a semiarid area. InIOP Conference Series: Earth and Environmental Science 637(1): 012006. https://doi.org/10.1088/1755-1315/637/1/012006  
Kamatchi K.M., Anitha K., Kumar K.A., Senthil A., Kalarani M.K., Djanaguiraman M. 2023. Impacts of combined drought and high-temperature stress on growth, physiology, and yield of crops. Plant Physiology Reports. https://doi.org/10.1007/s40502-023-00754-4
Khalid M., Rehman H.M., Ahmed N., Nawaz S., Saleem F., Ahmad S., Uzair M., Rana I.A., Atif R.M., Zaman Q.U., Lam H.M. 2022. Using exogenous melatonin, glutathione, proline, and glycine betaine treatments to combat abiotic stresses in crops. International Journal of Molecular Sciences 23(21): 12913. https://doi.org/10.3390/ijms232112913 
Khan T.A., Saleem M., Fariduddin Q. 2022. Melatonin influences stomatal behavior, root morphology, cell viability, photosynthetic responses, fruit yield, and fruit quality of tomato plants exposed to salt stress. Journal of Plant Growth Regulation 42(4): 2408-2432. https://doi.org/10.1007/s00344-022-10713-2
Khanna M., Swinton S.M., Messer K.D. 2018. Sustaining our natural resources in the face of increasing societal demands on agriculture: Directions for future research. Applied Economic Perspectives and Policy 40(1): 38-59. https://doi.org/10.1093/aepp/ppx055
Li C., Tan D.X., Liang D., Chang C., Jia D., Ma F. 2015. Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behavior in two Malus species under drought stress. Journal of Experimental Botany 66(3): 669-680. https://doi.org/10.1093/jxb/eru476
Meng J.F., Xu T.F., Wang Z.Z., Fang Y.L., Xi Z.M., Zhang Z.W. 2014. The ameliorative effects of exogenous melatonin on grape cuttings under water‐deficient stress: antioxidant metabolites, leaf anatomy, and chloroplast morphology. Journal of Pineal Research 57(2): 200-212. https://doi.org/10.1111/jpi.12159
Mohamadi Esboei M., Ebrahimi A., Amerian M.R., Alipour H. 2022. Melatonin confers fenugreek tolerance to salinity stress by stimulating the biosynthesis processes of enzymatic, non-enzymatic antioxidants, and diosgenin content. Frontiers in Plant Science 13: 890613. https://doi.org/10.3389/fpls.2022.890613
Moreno J.E., Campos M.L. 2022. Waking up for defense! Melatonin as a regulator of stomatal immunity in plants. Plant Physiology 188(1): 14-15. https://doi.org/10.1093/plphys/kiab481
Sharma A., Zheng B. 2019. Melatonin mediated regulation of drought stress: Physiological and molecular aspects. Plants 8(7): 190. https://doi.org/10.3390/plants8070190
Somta P., Laosatit K., Yuan X., Chen X. 2022. Thirty years of mung bean genome research: Where do we stand and what have we learned?. Frontiers in Plant Science 13: 944721. https://doi.org/10.3389/fpls.2022.944721 
Sun C., Liu L., Wang L., Li B., Jin C., Lin X. 2021. Melatonin: A master regulator of plant development and stress responses. Journal of Integrative Plant Biology 63(1): 126-145. https://doi.org/10.1111/jipb.12993 
Tan X.L., Zhao Y.T., Shan W., Kuang J.F., Lu W.J., Su X.G., Tao N.G., Lakshmanan P., Chen J.Y. 2020. Melatonin delays leaf senescence of postharvest Chinese flowering cabbage through ROS homeostasis. Food Research International 138: 109790. https://doi.org/10.1016/j.foodres.2020.109790
Wei W., Li Q.T., Chu Y.N., Reiter R.J., Yu X.M., Zhu D.H., Zhang W.K., Ma B., Lin Q., Zhang J.S., Chen S.Y. 2015. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. Journal of Experimental Botaney 66(3): 695-707. https://doi.org/10.1093/jxb/eru392
Wen D., Gong B., Sun S., Liu S., Wang X., Wei M., Yang F., Li Y., Shi Q. 2016. Promoting roles of melatonin in adventitious root development of Solanum lycopersicum L. by regulating auxin and nitric oxide signaling. Frontiers in Plant Science 7: 718. https://doi.org/10.3389/fpls.2016.00718
Yang S., Zhao Y., Qin X., Ding C., Chen Y., Tang Z., Huang Y., Reiter R.J., Yuan S., Yuan M. 2022a. New insights into the role of melatonin in photosynthesis. Journal of Experimental Botany 73(17): 5918-5927. https://doi.org/10.1093/jxb/erac230
Yang X., Chen J., Ma Y., Huang M., Qiu T., Bian H., Han N., Wang J. 2022b. Function, mechanism, and application of plant melatonin: An update with a focus on the cereal crop, barley (Hordeum vulgare L.). Antioxidants 11(4): 634. https://doi.org/10.3390/antiox11040634
Yuan L., Wu L., Yang C., Lv Q. 2013. Effects of iron and zinc foliar applications on rice plants and their grain accumulation and grain nutritional quality. Journal of the Science of Food and Agriculture 93(2): 254-261. https://doi.org/10.1002/jsfa.5749
Zafar S., Hasnain Z., Anwar S., Perveen S., Iqbal N., Noman A.L., Ali M. 2019. Influence of melatonin on antioxidant defense system and yield of wheat (Triticum aestivum L.) genotypes under saline condition. Pakistan Journal of Botany 51(6): 1987-1994. https://dx.doi.org/10.30848/PJB2019-6(5)
Zang H., Yang X., Feng X., Qian X., Hu Y., Ren C., Zeng Z. 2015. Rhizodeposition of nitrogen and carbon by mung bean (Vigna radiata L.) and its contribution to intercropped oats (Avena nuda L.). PloS one 10(3): e0121132. https://doi.org/10.1371/journal.pone.0121132
Zhang M., Gao C., Xu L., Niu H., Liu Q., Huang Y., Lv G., Yang H., Li M. 2022. Melatonin and indole-3-acetic acid synergistically regulate plant growth and stress resistance. Cells 11(20): 3250. https://doi.org/10.3390/cells11203250
Zhang N., Zhao B., Zhang H.J., Weeda S., Yang C., Yang Z.C., Ren S., Guo Y.D. 2013. Melatonin promotes water‐stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). Journal of Pineal Research 54(1): 15-23. https://doi.org/10.1111/j.1600-079X.2012.01015.x 
Zhang Y., Liang T., Dong H. 2024. Melatonin enhances waterlogging tolerance of field-grown cotton through quiescence adaptation and compensatory growth strategies. Field Crops Research 306: 109217. https://doi.org/10.1016/j.fcr.2023.109217
Zhao C., Yang M., Wu X., Wang Y., Zhang R. 2021a. Physiological and transcriptomic analyses of the effects of exogenous melatonin on drought tolerance in maize (Zea mays L.). Plant Physiology and Biochemistry 168: 128-142. https://doi.org/10.1016/j.plaphy.2021.09.044
Zhao Y.Q., Zhang Z.W., Chen Y.E., Ding C.B., Yuan S., Reiter R.J., Yuan M. 2021b. Melatonin: a potential agent in delaying leaf senescence. Critical Reviews in Plant Sciences 40(1): 1-22. https://doi.org/10.1080/07352689.2020.1865637