Maximizing Essential Oil Yield and Quality in Menthol Mint (Mentha arvensis L.) by Reducing Water Requirement through Deficit Irrigation Practices

Document Type : Original Article

Authors

1 Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India

2 Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants PO-CIMAP, Lucknow-226015, India

3 Jawaharlal Nehru University, New Delhi, 110067, India

4 Department of Biosciences, Integral University, Kursi Road, Lucknow- 226026

5 Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants PO-CIMAP, Lucknow-226015, India

Abstract

Menthol mint (Mentha arvensis L.) is an aromatic and medicinal plant worldwide cultivated for high-value essential oil.  It comes under angiospermic plant and belongs to family Lamiaceae commonly known as Japanese mint. The high-value essential oil is obtained from the stem and leaf of plant by the process of hydro-distillation through which major ingredient L-menthol is obtained that is used in aroma and pharmaceutical industries. This investigation aimed to reduce water requirements which can enhance its productivity for sustaining menthol mint cultivation in India. The present investigation has been undertaken as treatment combination which includes two varieties viz. i) Kosi and CIM-Kranti; three depths of soil moisture viz. i) 3 cm, ii) 6 cm and iii) 9 cm along with three moisture regimes, i.e., i) 20±5%, ii) 40±5%, and 60±5% available soil moisture (ASM) were tested in split-split plot design during 2018 and 2019 (from February to June). Results from the present study revealed that the maximum oil yield was recorded 116.78 kg ha-1in cv. Kosi and 107.23 kg ha-1 in cv. for CIM-Kranti, whereas menthol yield was recorded 89.23 kg ha-1in cv. Kosi and 85.13 kg ha-1in cv. CIM-Kranti under 6 cm depth of irrigation when applied irrigation at 40±5% available soil moisture (ASM) in menthol mint. However, the lowest water requirement was recorded 118 mm in cv. Kosi and 148 mm in cv. CIM-Kranti. The highest water use efficiency was recorded 0.61 in cv. Kosi and 0.51 kg oil ha-1 mm-1 in cv. CIM- Kranti under 3 cm depth of irrigation and when irrigations were applied at 20±5 % ASM. The highest net returns of $ 1140.91 ha-1 and $ 989.70 ha-1 have been recorded in Kosi and CIM-Kranti, respectively were computed at 6 cm depth of irrigation and when irrigations were applied at 40±5% available soil moisture as compared with other treatments. The irrigation depth (6 cm) applied at 40±5% ASM was found to be a perfect combination for obtaining maximum oil yield, water use efficiency, net returns, and benefit-cost ratio.

Graphical Abstract

Maximizing Essential Oil Yield and Quality in Menthol Mint (Mentha arvensis L.) by Reducing Water Requirement through Deficit Irrigation Practices

Highlights

  • The major constraint is the high water requirement during cultivation.
  • Optimized depth of irrigation and moisture regimes resulted in enhancement in productivity.
  • The maximum essential oil yield and net return were obtained under the optimized depth of soil moisture and moisture regime.

Keywords

Main Subjects


Abdi G., Shokrpour M., Salami S.A. 2019. Essential oil composition at different plant growth development of peppermint (Mentha x piperita L.) under water deficit stress. Journal of Essential Oil Bearing Plants 22(2): 431-440. https://doi.org/10.1080/0972060X.2019.1581095
Alandia G., Jacobsen S.E., Kyvsgaard N., Condori B., Liu F. 2016. Nitrogen sustains seed yield of quinoa under intermediate drought. Journal of Agronomy and Crop Science 202(4): 281-291. https://doi.org/10.1111/jac.12155
Alinian S., Razmjoo J., Zeinali H. 2016. Flavonoids, anthocyanins, phenolics and essential oil produced in cumin (Cuminum cyminum L.) accessions under different irrigation regimes. Industrial Crops and Products 81: 49-55. https://doi.org/10.1016/j.indcrop.2015.11.040  
Baghalian K., Abdoshah S., Khalighi-Sigaroodi F., Paknejad F. 2011. Physiological and phytochemical response to drought stress of German chamomile (Matricariarecutita L.). Plant Physiology and Biochemistry 49(2): 201-207. https://doi.org/10.1016/j.plaphy.2010.11.010
Bannayan M., Nadjafi F., Azizi M., Tabrizi L., Rastgoo M. 2008. Yield and seed quality of Plantago ovata and Nigella sativa under different irrigation treatments. Industrial Crops and Products 27(1): 11-16. https://doi.org/10.1016/j.indcrop.2007.05.002
Behera M.S., Mahapatra P.K., Singandhupe R., Kundu D.K., Kannan K., Mandal K.G., Singh A. 2014. Effect of drip fertigation on yield, water use efficiency and water productivity of mint (Mentha arvensis L.). Journal of Agriculture Physics 14(1): 37-43.
Caser M., Chitarra W., D'Angiolillo F., Perrone I., Demasi S., Lovisolo C., Pistelli L., Pistelli L., Scariot V. 2019. Drought stress adaptation modulates plant secondary metabolite production in Salvia dolomitica Codd. Industrial Crops and Products 129: 85-96. https://doi.org/10.1016/j.indcrop.2018.11.068
Caser M., Ruffoni B., Scariot V. 2012. Screening for drought tolerance in Salvia spp. and Helichrysum petiolare: a way to select low maintenance ornamental plants. In XXIV International Eucarpia Symposium Section Ornamentals: Ornamental Breeding Worldwide 953 (pp. 239-246). https://doi.org/10.17660/ActaHortic.2012.953.33
Chrysargyris A., Laoutari S., Litskas V.D., Stavrinides M.C., Tzortzakis N. 2016. Effects of water stress on lavender and sage biomass production, essential oil composition and biocidal properties against Tetranychusurticae (Koch). Scientia horticulturae 213: 96-103. https://doi.org/10.1016/j.scienta.2016.10.024
Clevenger J.F. 1928. Apparatus for the determination of volatile oil. Journal of the American Pharmacists Association 17(4): 345-349. https://doi.org/10.1002/jps.3080170407
Delfine S., Loreto F., Pinelli P., Tognetti R., Alvino A. 2005. Isoprenoids content and photosynthetic limitations in rosemary and spearmint plants under water stress. Agriculture, ecosystems & environment 106(2-3): 243-252. https://doi.org/10.1016/j.agee.2004.10.012
Dong B., Shi L., Shi C., Qiao Y., Liu M., Zhang Z. 2011. Grain yield and water use efficiency of two types of winter wheat cultivars under different water regimes. Agricultural Water Management 99(1): 103-110. https://doi.org/10.1016/j.agwat.2011.07.013
Eiasu B.K., Soundy P., Steyn J.M. 2008. High irrigation frequency and brief water stress before harvest enhances essential oil yield of rose-scented geranium (Pelargonium capitatum × P. radens). HortScience 43(2): 500-504. https://doi.org/10.21273/HORTSCI.43.2.500
Ekren S., Sonmez C., Ozcakal E., Kurttaş Y.S.K., Bayram E., Gurgulu H. 2012. The effect of different irrigation water levels on yield and quality characteristics of purple basil (Ocimum basilicum L.). Agricultural Water Management 109: 155-161. https://doi.org/10.1016/j.agwat.2012.03.004
Farre I., Faci J.M. 2009. Deficit irrigation in maize for reducing agricultural water use in a Mediterranean environment. Agricultural Water Management 96(3): 383-394. https://doi.org/10.1016/j.agwat.2008.07.002
Feng W., Lindner H., Robbins N.E., Dinneny J.R. 2016. Growing out of stress: the role of cell-and organ-scale growth control in plant water-stress responses. The Plant Cell 28(8): 1769-1782. https://doi.org/10.1105/tpc.16.00182
Ghamarnia H., Basiri M., Ghobadi M., Palash M. 2023. Performance of peppermint (Mentha piperita L.) in different water deficit and salinity management. Agrotechniques in Industrial Crops 3(2): 84-95. https://doi.org/10.22126/atic.2023.8839.1085
Hassanpour H., Khavari-Nejad R.A., Niknam V., Razavi K., Najafi F. 2014. Effect of penconazole and drought stress on the essential oil composition and gene expression of Mentha pulegium L.(Lamiaceae) at flowering stage. Acta physiologiae plantarum 36: 1167-1175. https://doi.org/10.1007/s11738-014-1492-1
Jaleel C.A., Manivannan P.W.A., Farooq M., Al-Juburi H.J., Somasundaram R., Panneerselvam R. 2009. Drought stress in plants: a review on morphological characteristics and pigments composition. International Journal of Agricultural Biology 11(1): 100-105.
Kalamartzis I., Menexes G., Georgiou P., Dordas C. 2020. Effect of water stress on the physiological characteristics of five basil (Ocimum basilicum L.) cultivars. Agronomy 10(7): 1029. https://doi.org/10.3390/agronomy10071029
Karhu K., Auffret M.D., Dungait J.A., Hopkins D.W., Prosser J.I., Singh B.K., Subke J.A., Wookey P.A., Ågren G.I., Sebastia M.T., Gouriveau F. 2014. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513(7516): 81-84. https://doi.org/10.1038/nature13604
Khalid K.A. 2006. Influence of water stress on growth, essential oil, and chemical composition of herbs (Ocimum sp.). International Agrophysics 20(4): 289-296.
Khalid K.A., da Silva J.A., Cai W. 2010. Water deficit and polyethylene glycol 6000 affects morphological and biochemical characters of (Pelargonium odoratissimum L.). Scientia Horticulturae 125(2): 159-166. https://doi.org/10.1016/j.scienta.2010.03.009
Khorasaninejad S., Mousavi A., Soltanloo H., Hemmati K., Khalighi A. 2011. The effect of drought stress on growth parameters, essential oil yield, and constituent of peppermint (Mentha piperita L.). Journal of Medicinal Plants Research 5(22): 5360-5365.
Kirda C. 2002. Deficit irrigation scheduling based on plant growth stages showing water stress tolerance. Food and Agricultural Organization of the United Nations, Deficit Irrigation Practices, Water Reports 22(102). https://www.fao.org/3/y3655e/y3655e03.htm
Kostrzewska M.K, Jastrzębska M., Wanic M., Treder K. 2017. Effect of a sowing regime and water conditions on nitrogen content and accumulation in the aerial biomass of spring barley (Hordeum vulgare L.) and Italian ryegrass (Lolium multiflorum Lam.). Journal of Elementology 22(2): 607-616. https://doi.org/10.5601/jelem.2016.21.4.1198
Kumar A., Verma N., Nilofer, Kaur P., Kumar D., Ghosh D., Singh A., Siddiqui A., Kumar N., Singh A.K., Khare P., Singh S. 2022. Physiological and chemical changes induced by transparent polythene+ green net shed on Pelargonium graveolens L. mother plants during monsoon season. Industrial Crops and Products 188: 115686. https://doi.org/10.1016/j.indcrop.2022.115686
Kumar D., Kumar R., Singh A.K., Verma K., Singh K.P., Kumar A., Singh V. 2021. A novel and economically viable agro-technique for enhancing productivity and resource use efficiency in menthol mint (Mentha arvensis L.). Industrial Crops and Products 162(2021): 113233. https://doi.org/10.1016/j.indcrop.2020.113233
Kumar D., Kumar R., Singh A.K., Verma K., Singh K.P., Nilofer, Kumar A., Kaur P., Singh A., Pandey J., Khare P., Singh S. 2020. Influence of planting methods on production of suckers (rhizome or propagative material), essential oil yield, and quality of menthol mint (Mentha arvensis L.). International Journal of Current Microbiology and Applied Science 9(7): 3675-3689. https://doi.org/10.20546/ijcmas.2020.907.431
Laribi B., Bettaieb I., Kouki K., Sahli A., Mougou A., Marzouk B. 2009. Water deficit effects on caraway (Carum carvi L.) growth, essential oil and fatty acid composition. Industrial Crops and Products 30(3): 372-379. https://doi.org/10.1016/j.indcrop.2009.07.005
Leithy S., El Meseiry T.A., Abdallah E.F. 2006. Effect of biofertilizer, cell stabilizer and irrigation regime on rosemary herbage oil yield and quality. Journal of Applied Sciences Research 2(10): 773-779.
Llorens-Molina J.A., Vacas S. 2016. Effect of drought stress on essential oil composition of Thymus vulgaris L. (Chemotype 1, 8- cineole) from wild populations of Eastern Iberian Peninsula. Journal of Essential Oil Research 29(2): 145-155. https://doi.org/10.1080/10412905.2016.1211561
Matraka M., Ninou E., Giannakoula A., Lazari D., Panou-Filotheou H., Bosabalidis A.M. 2010. Effects of soil water content on (Mentha spicata L.) and (Origanimdictamnus L.). Israel Journal of Plant Sciences 58(3-4): 229-239. https://doi.org/10.1560/IJPS.58.2.229
Mishra A., Srivastava N.K. 2000. Influence of water stress on Japanese mint. Journal of Herbs Spices Medicinal and Plants 7(1): 51-58. https://doi.org/10.1300/J044v07n01_07
Mishra R.D., Ahmed M. 1987. Practical Manual of Irrigation, 1stedn. Oxford and IBH, New Delhi. 207 p.
Nilofer, Singh A.K., Singh A., Singh S. 2018. Impact of sowing and harvest times and irrigation regimes on the sennoside content of Cassia angustifolia Vahl. Industrial Crops and Products 125: 482-490. https://doi.org/10.1016/j.indcrop.2018.09.025
Panse V.C., Sukhatme P.V. 1985. Statistical Methods for Agricultural Workers. Indian council of Agricultural Research, New Delhi, India.
Pellegrini E., Hoshika Y., Dusart N., Cotrozzi L., Gérard J., Nali C., Vaultier M.N., Jolivet Y., Lorenzini G., Paoletti E. 2019. Antioxidative responses of three oak species under ozone and water stress conditions. Science of the total environment 647: 390-399. https://doi.org/10.1016/j.scitotenv.2018.07.413
Rahimi Y., Taleei A., Ranjbar M. 2017. Changes in the expression of key genes involved in the biosynthesis of menthol and menthofuran in Mentha piperita L. under drought stress. Acta Physiologiae Plantarum 39: 1-9. https://doi.org/10.1007/s11738-017-2502-x
Saeidnejad A.H., Kafi M,. Khazaei H.R., Pessarakli M. 2013. Effects of drought stress on quantitative and qualitative yield and antioxidative activity of Bunium persicum. Turkish Journal of Botany 37(5): 930-939. https://doi.org/10.3906/bot-1301-2
Shabih F., Farooqi A.H., Srikant S. 2000. Effect of drought stress and plant density on growth and essential oil metabolism in citronella java (Cymbopogon winterianus) cultivars. Journal of Medicinal and Aromatic Plant Sciences 22(1B): 563-567.
Shao H.B., Chu L.Y., Jaleel C.A., Zhao C.X. 2008. Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biologies 331(3): 215-225. https://doi.org/10.1016/j.crvi.2008.01.002
Simon J.E., Reiss-Bubenheim D., Joly R.J., Charles D.J. 1992. Water stress induced alterations in essential oil content and composition of sweet basil. Journal of Essential Oil Research 4(1): 71-75. https://doi.org/10.1080/10412905.1992.9698013
Singh S., Ram M., Ram D., Sharma S., Singh D.V. 1997. Water requirement and productivity of palmarosa on sandy loam soil under a sub-tropical climate. Agricultural Water Management 35(1-2): 1-10. https://doi.org/10.1016/S0378-3774(97)00038-3  
Telci I., Bayram E., Yilmaz G., Avci B. 2006. Variability in essential oil composition of Turkish basils (Ocimum basilicum L.). Biochemical Systematics and Ecology 34(6): 489-497. https://doi.org/10.1016/j.bse.2006.01.009
Tiwari P. 2016. Recent advances and challenges in trichome research and essential oil biosynthesis in Mentha arvensis L. Industrial Crops and Products 82: 141-148. https://doi.org/10.1016/j.indcrop.2015.11.069  
Vilanova C.M., Coelho K.P., Luz T.R., Silveira D.P., Coutinho D.F., de Moura E.G. 2018. Effect of different water application rates and nitrogen fertilisation on growth and essential oil of clove basil (Ocimum gratissimum L.). Industrial Crops and Products 125: 186-197. https://doi.org/10.1016/j.indcrop.2018.08.047
Yaseen M., Ram P., Yadav A., Singh K. 2003. Response of Indian basil (Ocimum basilicum) to irrigation and nitrogen schedule in Central Uttar Pradesh. Annals of Plant Physiology 17(2): 177-181.