Asghar T., Iqbal M., Jamil Y., Nisar J., Shahid M. 2017. Comparison of HeNe laser and sinusoidal non-uniform magnetic field seed pre-sowing treatment effect on
Glycine max (Var 90-I) germination, growth and yield. Journal of Photochemistry and Photobiology B: Biology 166: 212-219.
https://doi.org/10.1016/j.jphotobiol.2016.11.018
Bakhshandeh E., Hosseini Sanehkoori F., Ghorbani H., Nematzadeh G.A., Sekrafi M., Abdellaoui R., Yaghoubi Khanghahi M., Crecchio C. 2023. Quantifying plant biomass and seed production in camelina (
Camelina sativa (L.) Crantz) across a large range of plant densities: Modelling approaches. Annals of Applied Biology 183(1): 23-32.
https://doi.org/10.1111/aab.12830
Bastron A.V., Filimonova N.G., Meshcheryakov A.V., Mikheeva N.B., Ermakova I.N. 2020. Technology of microwave treatment of camelina seeds and its economic efficiency. In IOP Conference Series. Earth and Environmental Science 421(2): 022065.
https://doi.org/10.1088/1755-1315/421/2/022065
Begum H.A., Hamayun M., Shad N., Khan W., Ahmad J., Khan M.E.H., Jones D.A., Ali K. 2021. Effects of UV radiation on germination, growth, chlorophyll content, and fresh and dry weights of
Brassica rapa L. and
Eruca sativa L. Sarhad. Journal of Agriculture 37(3): 1016-1024.
https://dx.doi.org/10.17582/journal.sja/2021/37.3.1016.1024
Bilalis D.J., Katsenios N., Efthimiadou A., Efthimiadis P., Karkanis A. 2012a. Pulsed electromagnetic fields effect in oregano rooting and vegetative propagation: A potential new organic method. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science 62(1): 94-99.
https://doi.org/10.1080/09064710.2011.570374
Bilalis D.J., Katsenios N., Efthimiadou A., Karkanis A. 2012b. Pulsed electromagnetic field: an organic compatible method to promote plant growth and yield in two corn types. Electromagnetic biology and medicine 31(4): 333-343.
https://doi.org/10.3109/15368378.2012.661699
Cakmak T., Dumlupinar R., Erdal S. 2010. Acceleration of germination and early growth of wheat and bean seedlings grown under various magnetic field and osmotic conditions. Bioelectromagnetics 31(2): 120-129.
https://doi.org/10.1002/bem.20537
Cammaerts M.C., Johansson O. 2015. Effect of man-made electromagnetic fields on common Brassicaceae
Lepidium sativum (cress d’Alinois) seed germination: a preliminary replication study. Fyton 84(1): 132-137.
http://dx.doi.org/10.32604/phyton.2015.84.132
Chanioti S., Katsenios N., Efthimiadou A., Stergiou P., Xanthou Z.M., Giannoglou M., Dimitrakellis P., Gogolides E., Katsaros G. 2021. Pre-sowing treatment of maize seeds by cold atmospheric plasma and pulsed electromagnetic fields: Effect on plant and kernels characteristics. Australian Journal of Crop Science 15(2): 251-259.
http://dx.doi.org/10.21475/ajcs.21.15.02.p2932
Czarnik M., Jarecki W., Bobrecka-Jamro D. 2018. Reaction of winter varieties of false flax (
Camelina sativa (L.) Crantz) to the varied sowing time. Journal of Central European Agriculture 19(3): 571-586.
https://doi.org/10.5513/JCEA01/19.3.2054
Dukić V., Cvijanović M., Marinković J., Cvijanović G., Dozet G., Miladinov Z. 2015. Application of low frequency electromagnetic waves (LFEV) and biological inputs in the production of soybean. Agriculture and Forestry 61(1): 231-237.
https://doi.org/10.17707/AgricultForest.61.1.30
Efthimiadou A., Katsenios N., Karkanis A., Papastylianou P., Triantafyllidis V., Travlos I. Bilalis D.J. 2014. Effects of presowing pulsed electromagnetic treatment of tomato seed on growth, yield, and lycopene content. The Scientific World Journal 2014: 369745.
https://doi.org/10.1155/2014/369745
Faqenabi F., Tajbakhsh M., Bernoosi I., Saber-Rezaii M., Tahri F., Parvizi S., Izadkhah M., Gorttapeh A.H., Sedqi H. 2009. The effect of magnetic field on growth, development and yield of safflower and its comparison with other treatments. Research journal of biological sciences 4(2): 174-178.
https://medwelljournals.com/abstract/?doi=rjbsci.2009.174.178
Farid M., Ali S., Rizwan M., Saeed R., Tauqeer H.M., Sallah-Ud-Din R., Azam A., Raza N. 2017. Microwave irradiation and citric acid assisted seed germination and phytoextraction of nickel (Ni) by Brassica napus L.: morpho-physiological and biochemical alterations under Ni stress. Environmental Science and Pollution Research 24: 21050-21064.
https://doi.org/10.1007/s11356-017-9751-5
Farooq S., Onen H., Tad S., Ozaslan C., Mahmoud S.F., Brestic M., Zivcak M., Skalicky M., El-Shehawi A.M. 2021. The influence of environmental factors on seed germination of
Polygonum perfoliatum L.: Implications for Management. Agronomy 11(6): 1123.
https://doi.org/10.3390/agronomy11061123
Günç Ergönül P., Aksoylu Özbek Z. 2018. Identification of bioactive compounds and total phenol contents of cold pressed oils from safflower and camelina seeds. Journal of Food Measurement and Characterization 12: 2313-2323.
https://doi.org/10.1007/s11694-018-9848-7
Guo L., Ma M., Wu L., Zhou M., Li M., Wu B., Li L., Liu X., Jing R., Chen W., Zhao H. 2022. Modified expression of TaCYP78A5 enhances grain weight with yield potential by accumulating auxin in wheat (
Triticum aestivum L.). Plant Biotechnology Journal 20(1): 168-182.
https://doi.org/10.1111/pbi.13704
Hafeez M.B., Zahra N., Ahmad N., Shi Z., Raza A., Wang X., Li J. 2023. Growth, physiological, biochemical and molecular changes in plants induced by magnetic fields: a review. Plant Biology 25(1): 8-23.
https://doi.org/10.1111/plb.13459
Hameed R.K., Al-Sugmiany R.Z., Shlash H.M., Salih M.H. 2022. Detecting the effects of Wi-Fi waves on phenotypic and molecular markers of Vicia faba L. Science Archives 3(2): 113-119.
http://dx.doi.org/10.47587/SA.2022.3206
Havas M., Sheena Symington M. 2016. Effects of Wi-Fi radiation on germination and growth of broccoli, pea, red clover and garden cress seedlings: A partial replication study. Current Chemical Biology 10(1): 65-73.
https://doi.org/10.2174/2212796810666160419161000
ISTA. 2008. International rules for seed Testing edition. The International Seed Testing Association (ISTA).
Krzyżaniak M., Stolarski M.J., Tworkowski J., Puttick D., Eynck C., Załuski D., Kwiatkowski J. 2019. Yield and seed composition of 10 spring camelina genotypes cultivated in the temperate climate of Central Europe. Industrial Crops and Products 138: 111443.
https://doi.org/10.1016/j.indcrop.2019.06.006
Menegatti R.D., de Oliveira L.O., da Costa Á.V.L., Braga E.J.B., Bianchi V.J. 2019. Magnetic field and gibberellic acid as pre-germination treatments of passion fruit seeds. Revista Ciência Agrícola 17(1): 15-22.
https://doi.org/10.28998/rca.v17i1.6522
Mildažienė V., Aleknavičiūtė V., Žūkienė R., Paužaitė G., Naučienė Z., Filatova I., Lyushkevich V., Haimi P., Tamošiūnė I., Baniulis D. 2019. Treatment of common sunflower (
Helianthus annus L.) seeds with radio-frequency electromagnetic field and cold plasma induces changes in seed phytohormone balance, seedling development and leaf protein expression. Scientific Reports 9: 6437.
https://doi.org/10.1038/s41598-019-42893-5
Morozov G.A., Blokhin V.I., Stakhova N.E., Morozov O.G., Dorogov N.V., Bizyakin A.S. 2013. Microwave technology for treatment seed. World Journal of Agricultural Research 1(3): 39-43.
http://pubs.sciepub.com/wjar/1/3/2/index.html
Neupane D., Solomon J.K.Q., Davison J., Lawry T. 2018. Nitrogen source and rate effects on grain and potential biodiesel production of camelina in the semiarid environment of northern Nevada. Gcb Bioenergy 10(11): 861-876.
https://doi.org/10.1111/gcbb.12540
Neupane D., Solomon J.K.Q., Mclennon E., Davison J., Lawry T. 2019. Sowing date and sowing method influence on camelina cultivars grain yield, oil concentration, and biodiesel production. Food and Energy Security 8(3): e00166.
https://doi.org/10.1002/fes3.166
Ozel H.B., Cetin M., Sevik H., Varol T., Isik B., Yaman B. 2021. The effects of base station as an electromagnetic radiation source on flower and cone yield and germination percentage in
Pinus brutia Ten. Biologia Futura 72: 359-365.
https://doi.org/10.1007/s42977-021-00085-1
Poghosyan G.H., Mikaelyan M.S., Vardevanyan P.H. 2023. Effect of extremely high frequency electromagnetic field on germination, growth and amylase activity of wheat seeds. Chemical & Biological Sciences/Gitakan Teghekagir. K'imia, Kensabanut'yun 57(1): 260.
https://doi.org/10.46991/PYSU:B/2023.57.1.019
Ramezani Vishki F., Majd A., Nejadsattari T., Arbabian S. 2012. Effects of electromagnetic field radiation on inducing physiological and biochemical changes in
Satureja bachtiarica L. Iranian Journal of Plant Physiology 2(4): 509-516. (In Farsi).
https://doi.org/10.30495/ijpp.2012.540787
Righini D., Zanetti F., Martínez-Force E., Mandrioli M., Toschi T.G., Monti A. 2019. Shifting sowing of camelina from spring to autumn enhances the oil quality for bio-based applications in response to temperature and seed carbon stock. Industrial Crops and Products 137: 66-73.
https://doi.org/10.1016/j.indcrop.2019.05.009
Saleh R.F., Al-Sugmiany R.Z., Al-Doori M.M., Al-Azzawie A. 2020. Phenotypic and genetic effects of Wi-Fi waves on some bacterial species isolated from otitis media infection tropical. Journal of Natural Product Research 4(12): 1056-1063.
https://doi.org/10.26538/tjnpr/v4i12.6
Schmidtpott S.M., Danho S., Kumar V., Seidel T., Schöllhorn W., Dietz K.J. 2022. Scrutinizing the impact of alternating electromagnetic fields on molecular features of the model plant
Arabidopsis thaliana. International Journal of Environmental Research and Public Health 19(9): 5144.
https://doi.org/10.3390/ijerph19095144
Shabrangi A., Hassanpour H., Majd A., Sheidai M. 2015. Induction of genetic variation by electromagnetic fields in
Zea mays L. and
Brassica napus L. Caryologia: International Journal of Cytology, Cytosystematics and Cytogenetics 68(4): 272-279.
https://doi.org/10.1080/00087114.2015.1109920
Soorni J., Shobbar Z.S., Kahrizi D., Zanetti F., Sadeghi K., Rostampour S., Kovács P.G., Kiss A., Mirmazloum I. 2022. Correlational analysis of agronomic and seed quality traits in Camelina sativa doubled haploid lines under rain-fed condition. Agronomy 12(2): 359.
https://doi.org/10.3390/agronomy12020359
Stefi A.L., Vassilacopoulou D., Margaritis L.H., Christodoulakis N.S. 2018. Oxidative stress and an animal neurotransmitter synthesizing enzyme in the leaves of wild growing myrtle after exposure to GSM radiation. Flora 243: 67-76.
https://doi.org/10.1016/j.flora.2018.04.006
Suarez-Rivero D., Marin-Mahecha O., Ortiz-Aguilar J., Suarez-Rivero M., Fuentes-Reines J.M., Guzman-Hernandez T.D.J. 2021. Electromagnetism as an inductor of biomass synthesis in
Brassica napus L. plants. Chemical Engineering Transactions 86: 163-168.
https://doi.org/10.3303/CET2186028
Sukhov V., Sukhova E., Sinitsyna Y., Gromova E., Mshenskaya N., Ryabkova A., Ilin N., Vodeneev V., Mareev E., Price C. 2021. Influence of magnetic field with Schumann resonance frequencies on photosynthetic light reactions in wheat and pea. Cells 10(1): 149.
https://doi.org/10.3390/cells10010149
Talei D., Valdiani A., Maziah M., Mohsenkhah M. 2013. Germination response of MR 219 rice variety to different exposure times and periods of 2450 MHz microwave frequency. The Scientific World Journal 2013: 408026.
https://doi.org/10.1155/2013/408026
Upadhyaya C., Upadhyaya T., Patel I. 2022. Attributes of non-ionizing radiation of 1800 MHz frequency on plant health and antioxidant content of Tomato (
Solanum Lycopersicum) plants. Journal of Radiation Research and Applied Sciences 15(1): 54-68.
https://doi.org/10.1016/j.jrras.2022.02.001
Vashisth A., Nagarajan S. 2010. Effect on germination and early growth characteristics in sunflower (
Helianthus annuus) seeds exposed to static magnetic field. Journal of Plant Physiology 167(2): 149-156.
https://doi.org/10.1016/j.jplph.2009.08.011
Wust P., Kortüm B., Strauss U., Nadobny J., Zschaeck S., Beck M., Stein U., Ghadjar P. 2020. Non-thermal effects of radiofrequency electromagnetic fields. Scientific Reports 10(1): 13488.
https://doi.org/10.1038/s41598-020-69561-3
Zaidi S., Khatoon S., Imran M., Zohair S. 2018. Effects of electromagnetic fields (created by high tension lines) on some indigenous plant species-v. Boraginaceae juss., brassicaceae burnett and caesalpinaceae r. Br. Pakistan Journal of Botany 50(6): 2237-2244.
http://pakbs.org/pjbot/papers/1530047752.pdf
Zanetti F., Alberghini B., Marjanović Jeromela A., Grahovac N., Rajković D., Kiprovski B., Monti A. 2021. Camelina, an ancient oilseed crop actively contributing to the rural renaissance in Europe. A review. Agronomy for Sustainable Development 41: 2.
https://doi.org/10.1007/s13593-020-00663-y