The Effect of Wi-Fi Electromagnetic Waves on the Properties of Camelina sativa

Document Type : Original Article

Authors

1 Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran

2 Department of Agricultural Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran

Abstract

Electromagnetic waves are one of the tensions around agricultural plants, which have recently been widely used due to the development of telecommunication technology. Therefore, a field experiment was conducted during the years 2020-2021 at the Research Farm of Tarbiat Modares University to investigate the effect of WiFi electromagnetic wave (WEW) on the seed germination and growth characteristics of camelina. Seeds were exposed to Wi-Fi electromagnetic radiation at 15 cm (ER 15) and 25 cm (ER 25) cm from the modem for 24 hours (Pre-sowing treatment). The results showed that the germination percentage of seeds treated with WEW decreased by 24%. and this decrease was observed among growth factors such as hypocotyl length (20-43%), number of siliques per plant (56%), thousand seed weight (43%).  Conversely, the root length, plant height, seed per silique and dry plant weight were increased by 24.6, 60.9, 10.5 and 56.3% under WEW treatment, respectively. Overall, this study showed that grain yield was greatly affected by electromagnetic waves and increased by about 23.45%. In general, among all the growth parameters, the correlation of the GY was positive and significant with DPW (r=0.735*), PH (r=0.669*) and SPS (r=0.659*). This result highlights the necessity for a better understanding of the mechanisms of electromagnetic waves in crops to help better seedling establishment.


Graphical Abstract

The Effect of Wi-Fi Electromagnetic Waves on the Properties of Camelina sativa

Highlights

  • Wi-Fi waves reduced the germination percentage of camelina seeds.
  • Wi-Fi waves improved the grain yield of camelina.
  • There was a positive and significant correlation between grain yield with plant height and the number of seeds per silique.

Keywords

Main Subjects


Asghar T., Iqbal M., Jamil Y., Nisar J., Shahid M. 2017. Comparison of HeNe laser and sinusoidal non-uniform magnetic field seed pre-sowing treatment effect on Glycine max (Var 90-I) germination, growth and yield. Journal of Photochemistry and Photobiology B: Biology 166: 212-219. https://doi.org/10.1016/j.jphotobiol.2016.11.018 
Bakhshandeh E., Hosseini Sanehkoori F., Ghorbani H., Nematzadeh G.A., Sekrafi M., Abdellaoui R., Yaghoubi Khanghahi M., Crecchio C. 2023. Quantifying plant biomass and seed production in camelina (Camelina sativa (L.) Crantz) across a large range of plant densities: Modelling approaches. Annals of Applied Biology 183(1): 23-32. https://doi.org/10.1111/aab.12830
Bastron A.V., Filimonova N.G., Meshcheryakov A.V., Mikheeva N.B., Ermakova I.N. 2020. Technology of microwave treatment of camelina seeds and its economic efficiency. In IOP Conference Series. Earth and Environmental Science 421(2): 022065. https://doi.org/10.1088/1755-1315/421/2/022065
Begum H.A., Hamayun M., Shad N., Khan W., Ahmad J., Khan M.E.H., Jones D.A., Ali K. 2021. Effects of UV radiation on germination, growth, chlorophyll content, and fresh and dry weights of Brassica rapa L. and Eruca sativa L. Sarhad. Journal of Agriculture 37(3): 1016-1024. https://dx.doi.org/10.17582/journal.sja/2021/37.3.1016.1024
Bilalis D.J., Katsenios N., Efthimiadou A., Efthimiadis P., Karkanis A. 2012a. Pulsed electromagnetic fields effect in oregano rooting and vegetative propagation: A potential new organic method. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science 62(1): 94-99. https://doi.org/10.1080/09064710.2011.570374
Bilalis D.J., Katsenios N., Efthimiadou A., Karkanis A. 2012b. Pulsed electromagnetic field: an organic compatible method to promote plant growth and yield in two corn types. Electromagnetic biology and medicine 31(4): 333-343. https://doi.org/10.3109/15368378.2012.661699
Cakmak T., Dumlupinar R., Erdal S. 2010. Acceleration of germination and early growth of wheat and bean seedlings grown under various magnetic field and osmotic conditions. Bioelectromagnetics 31(2): 120-129. https://doi.org/10.1002/bem.20537
Cammaerts M.C., Johansson O. 2015. Effect of man-made electromagnetic fields on common Brassicaceae Lepidium sativum (cress d’Alinois) seed germination: a preliminary replication study. Fyton 84(1): 132-137. http://dx.doi.org/10.32604/phyton.2015.84.132
Chanioti S., Katsenios N., Efthimiadou A., Stergiou P., Xanthou Z.M., Giannoglou M., Dimitrakellis P., Gogolides E., Katsaros G. 2021. Pre-sowing treatment of maize seeds by cold atmospheric plasma and pulsed electromagnetic fields: Effect on plant and kernels characteristics. Australian Journal of Crop Science 15(2): 251-259. http://dx.doi.org/10.21475/ajcs.21.15.02.p2932
Czarnik M., Jarecki W., Bobrecka-Jamro D. 2018. Reaction of winter varieties of false flax (Camelina sativa (L.) Crantz) to the varied sowing time. Journal of Central European Agriculture 19(3): 571-586. https://doi.org/10.5513/JCEA01/19.3.2054
Dukić V., Cvijanović M., Marinković J., Cvijanović G., Dozet G., Miladinov Z. 2015. Application of low frequency electromagnetic waves (LFEV) and biological inputs in the production of soybean. Agriculture and Forestry 61(1): 231-237. https://doi.org/10.17707/AgricultForest.61.1.30
Efthimiadou A., Katsenios N., Karkanis A., Papastylianou P., Triantafyllidis V., Travlos I. Bilalis D.J. 2014. Effects of presowing pulsed electromagnetic treatment of tomato seed on growth, yield, and lycopene content. The Scientific World Journal 2014: 369745. https://doi.org/10.1155/2014/369745
Faqenabi F., Tajbakhsh M., Bernoosi I., Saber-Rezaii M., Tahri F., Parvizi S., Izadkhah M., Gorttapeh A.H., Sedqi H. 2009. The effect of magnetic field on growth, development and yield of safflower and its comparison with other treatments. Research journal of biological sciences 4(2): 174-178. https://medwelljournals.com/abstract/?doi=rjbsci.2009.174.178 
Farid M., Ali S., Rizwan M., Saeed R., Tauqeer H.M., Sallah-Ud-Din R., Azam A., Raza N. 2017. Microwave irradiation and citric acid assisted seed germination and phytoextraction of nickel (Ni) by Brassica napus L.: morpho-physiological and biochemical alterations under Ni stress. Environmental Science and Pollution Research 24: 21050-21064. https://doi.org/10.1007/s11356-017-9751-5
Farooq S., Onen H., Tad S., Ozaslan C., Mahmoud S.F., Brestic M., Zivcak M., Skalicky M., El-Shehawi A.M. 2021. The influence of environmental factors on seed germination of Polygonum perfoliatum L.: Implications for Management. Agronomy  11(6): 1123. https://doi.org/10.3390/agronomy11061123
Gesch R.W., Johnson J.M. 2015. Water use in camelina–soybean dual cropping systems. Agronomy Journal 107(3): 1098-1104. https://doi.org/10.2134/agronj14.0626
Günç Ergönül P., Aksoylu Özbek Z. 2018. Identification of bioactive compounds and total phenol contents of cold pressed oils from safflower and camelina seeds. Journal of Food Measurement and Characterization 12: 2313-2323. https://doi.org/10.1007/s11694-018-9848-7
Guo L., Ma M., Wu L., Zhou M., Li M., Wu B., Li L., Liu X., Jing R., Chen W., Zhao H. 2022. Modified expression of TaCYP78A5 enhances grain weight with yield potential by accumulating auxin in wheat (Triticum aestivum L.). Plant Biotechnology Journal 20(1): 168-182. https://doi.org/10.1111/pbi.13704
Hafeez M.B., Zahra N., Ahmad N., Shi Z., Raza A., Wang X., Li J. 2023. Growth, physiological, biochemical and molecular changes in plants induced by magnetic fields: a review. Plant Biology 25(1): 8-23. https://doi.org/10.1111/plb.13459
Halgamuge M.N. 2017. Weak radiofrequency radiation exposure from mobile phone radiation on plants. Electromagnetic Biology and Medicine 36(2): 213-235. https://doi.org/10.1080/15368378.2016.1220389
Hameed R.K., Al-Sugmiany R.Z., Shlash H.M., Salih M.H. 2022. Detecting the effects of Wi-Fi waves on phenotypic and molecular markers of Vicia faba L. Science Archives 3(2): 113-119. http://dx.doi.org/10.47587/SA.2022.3206
Havas M., Sheena Symington M. 2016. Effects of Wi-Fi radiation on germination and growth of broccoli, pea, red clover and garden cress seedlings: A partial replication study. Current Chemical Biology 10(1): 65-73. https://doi.org/10.2174/2212796810666160419161000
ISTA. 2008. International rules for seed Testing edition. The International Seed Testing Association (ISTA).
Jimenez K.S. 2019. The effect of Wi-Fi radiation in the growth of mongo (Phaseolus aureus) plants. Ascendens Asia Journal of Multidisciplinary Research Abstracts 3(2). https://www.ojs.aaresearchindex.com/index.php/AAJMRA/article/view/4605
Krzyżaniak M., Stolarski M.J., Tworkowski J., Puttick D., Eynck C., Załuski D., Kwiatkowski J. 2019. Yield and seed composition of 10 spring camelina genotypes cultivated in the temperate climate of Central Europe. Industrial Crops and Products 138: 111443. https://doi.org/10.1016/j.indcrop.2019.06.006
Menegatti R.D., de Oliveira L.O., da Costa Á.V.L., Braga E.J.B., Bianchi V.J. 2019. Magnetic field and gibberellic acid as pre-germination treatments of passion fruit seeds. Revista Ciência Agrícola 17(1): 15-22. https://doi.org/10.28998/rca.v17i1.6522
Mildažienė V., Aleknavičiūtė V., Žūkienė R., Paužaitė G., Naučienė Z., Filatova I., Lyushkevich V., Haimi P., Tamošiūnė I., Baniulis D. 2019. Treatment of common sunflower (Helianthus annus L.) seeds with radio-frequency electromagnetic field and cold plasma induces changes in seed phytohormone balance, seedling development and leaf protein expression. Scientific Reports 9: 6437. https://doi.org/10.1038/s41598-019-42893-5
Morozov G.A., Blokhin V.I., Stakhova N.E., Morozov O.G., Dorogov N.V., Bizyakin A.S. 2013. Microwave technology for treatment seed. World Journal of Agricultural Research 1(3): 39-43. http://pubs.sciepub.com/wjar/1/3/2/index.html
Neupane D., Solomon J.K.Q., Davison J., Lawry T. 2018. Nitrogen source and rate effects on grain and potential biodiesel production of camelina in the semiarid environment of northern Nevada. Gcb Bioenergy 10(11): 861-876. https://doi.org/10.1111/gcbb.12540
Neupane D., Solomon J.K.Q., Mclennon E., Davison J., Lawry T. 2019. Sowing date and sowing method influence on camelina cultivars grain yield, oil concentration, and biodiesel production. Food and Energy Security 8(3): e00166. https://doi.org/10.1002/fes3.166
Ozel H.B., Cetin M., Sevik H., Varol T., Isik B., Yaman B. 2021. The effects of base station as an electromagnetic radiation source on flower and cone yield and germination percentage in Pinus brutia Ten. Biologia Futura 72: 359-365. https://doi.org/10.1007/s42977-021-00085-1
Pietruszewski S., Kania K. 2010. Effect of magnetic field on germination and yield of wheat. International Agrophysics 24(3): 297-302. http://www.international-agrophysics.org/Effect-of-magnetic-field-on-germination-and-yield-of-wheat,106385,0,2.html
Poghosyan G.H., Mikaelyan M.S., Vardevanyan P.H. 2023. Effect of extremely high frequency electromagnetic field on germination, growth and amylase activity of wheat seeds. Chemical & Biological Sciences/Gitakan Teghekagir. K'imia, Kensabanut'yun 57(1): 260. https://doi.org/10.46991/PYSU:B/2023.57.1.019
Ramezani Vishki F., Majd A., Nejadsattari T., Arbabian S. 2012. Effects of electromagnetic field radiation on inducing physiological and biochemical changes in Satureja bachtiarica L. Iranian Journal of Plant Physiology 2(4): 509-516. (In Farsi). https://doi.org/10.30495/ijpp.2012.540787 
Righini D., Zanetti F., Martínez-Force E., Mandrioli M., Toschi T.G., Monti A. 2019. Shifting sowing of camelina from spring to autumn enhances the oil quality for bio-based applications in response to temperature and seed carbon stock. Industrial Crops and Products 137: 66-73. https://doi.org/10.1016/j.indcrop.2019.05.009
Saleh R.F., Al-Sugmiany R.Z., Al-Doori M.M., Al-Azzawie A. 2020. Phenotypic and genetic effects of Wi-Fi waves on some bacterial species isolated from otitis media infection tropical. Journal of Natural Product Research 4(12): 1056-1063. https://doi.org/10.26538/tjnpr/v4i12.6 
Schmidtpott S.M., Danho S., Kumar V., Seidel T., Schöllhorn W., Dietz K.J. 2022. Scrutinizing the impact of alternating electromagnetic fields on molecular features of the model plant Arabidopsis thaliana. International Journal of Environmental Research and Public Health 19(9): 5144. https://doi.org/10.3390/ijerph19095144
Shabrangi A., Hassanpour H., Majd A., Sheidai M. 2015. Induction of genetic variation by electromagnetic fields in Zea mays L. and Brassica napus L. Caryologia: International Journal of Cytology, Cytosystematics and Cytogenetics 68(4): 272-279. https://doi.org/10.1080/00087114.2015.1109920
Soorni J., Shobbar Z.S., Kahrizi D., Zanetti F., Sadeghi K., Rostampour S., Kovács P.G., Kiss A., Mirmazloum I. 2022. Correlational analysis of agronomic and seed quality traits in Camelina sativa doubled haploid lines under rain-fed condition. Agronomy 12(2): 359. https://doi.org/10.3390/agronomy12020359
Stefi A.L., Vassilacopoulou D., Margaritis L.H., Christodoulakis N.S. 2018. Oxidative stress and an animal neurotransmitter synthesizing enzyme in the leaves of wild growing myrtle after exposure to GSM radiation. Flora 243: 67-76. https://doi.org/10.1016/j.flora.2018.04.006
Suarez-Rivero D., Marin-Mahecha O., Ortiz-Aguilar J., Suarez-Rivero M., Fuentes-Reines J.M., Guzman-Hernandez T.D.J. 2021. Electromagnetism as an inductor of biomass synthesis in Brassica napus L. plants. Chemical Engineering Transactions 86: 163-168. https://doi.org/10.3303/CET2186028
Sukhov V., Sukhova E., Sinitsyna Y., Gromova E., Mshenskaya N., Ryabkova A., Ilin N., Vodeneev V., Mareev E., Price C. 2021. Influence of magnetic field with Schumann resonance frequencies on photosynthetic light reactions in wheat and pea. Cells 10(1): 149. https://doi.org/10.3390/cells10010149
Talei D., Valdiani A., Maziah M., Mohsenkhah M. 2013. Germination response of MR 219 rice variety to different exposure times and periods of 2450 MHz microwave frequency. The Scientific World Journal 2013: 408026. https://doi.org/10.1155/2013/408026
Teixeira da Silva J.A., Dobránszki J. 2016. Magnetic fields: how is plant growth and development impacted?. Protoplasma 253(2): 231-248. https://doi.org/10.1007/s00709-015-0820-7
Upadhyaya C., Upadhyaya T., Patel I. 2022. Attributes of non-ionizing radiation of 1800 MHz frequency on plant health and antioxidant content of Tomato (Solanum Lycopersicum) plants. Journal of Radiation Research and Applied Sciences 15(1): 54-68. https://doi.org/10.1016/j.jrras.2022.02.001
Vashisth A., Joshi D.K. 2017. Growth characteristics of maize seeds exposed to magnetic field. Bioelectromagnetics 38(2): 151-157. https://doi.org/10.1002/bem.22023
Vashisth A., Nagarajan S. 2010. Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. Journal of Plant Physiology 167(2): 149-156. https://doi.org/10.1016/j.jplph.2009.08.011
Wust P., Kortüm B., Strauss U., Nadobny J., Zschaeck S., Beck M., Stein U., Ghadjar P. 2020. Non-thermal effects of radiofrequency electromagnetic fields. Scientific Reports 10(1): 13488. https://doi.org/10.1038/s41598-020-69561-3
Zaidi S., Khatoon S., Imran M., Zohair S. 2018. Effects of electromagnetic fields (created by high tension lines) on some indigenous plant species-v. Boraginaceae juss., brassicaceae burnett and caesalpinaceae r. Br.  Pakistan Journal of Botany 50(6): 2237-2244. http://pakbs.org/pjbot/papers/1530047752.pdf
Zanetti F., Alberghini B., Marjanović Jeromela A., Grahovac N., Rajković D., Kiprovski B., Monti A. 2021. Camelina, an ancient oilseed crop actively contributing to the rural renaissance in Europe. A review. Agronomy for Sustainable Development 41: 2. https://doi.org/10.1007/s13593-020-00663-y