AbdelRahman M.A.E. 2023. An overview of land degradation, desertification and sustainable land management using GIS and remote sensing applications. Rendiconti Lincei. Scienze Fisiche e Naturali 34: 767-808.
https://doi.org/10.1007/s12210-023-01155-3
Abdullaev S.F., Sokolik I.N. 2020. Assessment of the Influences of Dust Storms on Cotton Production in Tajikistan. In: Gutman G., Chen J., Henebry G., Kappas M. (eds) Landscape Dynamics of Drylands across Greater Central Asia: People, Societies and Ecosystems. Landscape Series, Springer, Cham.
https://doi.org/10.1007/978-3-030-30742-4_6
Achakzai K., Khalid S., Adrees M., Bibi A., Ali S., Nawaz R., Rizwan M. 2017. Air pollution tolerance index of plants around brick kilns in Rawalpindi, Pakistan. Journal of Environmental Management 190: 252-258.
https://doi.org/10.1016/j.jenvman.2016.12.072
Al Faifi T., El-Shabasy A. 2021. Effect of heavy metals in the cement dust pollution on morphological and anatomical characteristics of
Cenchrus ciliaris L. Saudi Journal of Biological Sciences 28(1): 1069-1079.
https://doi.org/10.1016%2Fj.sjbs.2020.11.015
Alonso-Montesinos J., Martínez F.R., Polo J., Martín-Chivelet N., Batlles F.J. 2020. Economic effect of dust particles on photovoltaic plant production. Energies (23)13: 6376.
https://doi.org/10.3390/en13236376
Babu P.H., Rao K., Jayalalitha K., Ali M.A. 2018. Assessment of different dust pollutants effect on total chlorophyll content, transpiration rate and yield of black gram (
Phaseolus mungo L.). International Journal of Current Microbiology and Applied Sciences 7(4): 2890-2896.
https://doi.org/10.20546/ijcmas.2018.704.329
Bahadoran M., Mortazavi S.N., Hajizadeh Y. 2019. Evaluation of anticipated performance index, biochemical, and physiological parameters of cupressus arizonica greene and
Juniperus excelsa bieb for greenbelt development and biomonitoring of air pollution. International Journal of Phytoremediation 21(5): 496-502.
https://doi.org/10.1080/15226514.2018.1537251
Banerjee S., Banerjee A., Palit D. 2022. Morphological and biochemical study of plant species-a quick tool for assessing the impact of air pollution. Journal of Cleaner Production 339: 130647.
https://doi.org/10.1016/j.jclepro.2022.130647
Behrouzi M., Bazgeer S., Nouri H., Nejatian M.A., Akhzari D. 2022. Dust Storms Detection and Its Impacts on the Growth and Reproductive Traits of Grape vine (
Vitis vinifera) in Malayer Plain. Desert Ecosystem Engineering 8(23): 59-72. (In Farsi).
https://doi.org/10.22052/deej.2018.7.23.45
Chaurasia M., Patel K., Tripathi I., Rao K.S. 2022. Impact of dust accumulation on the physiological functioning of selected herbaceous plants of Delhi, India. Environmental Science and Pollution Research 29: 80739-80754.
https://doi.org/10.1007/s11356-022-21484-4
De Micco V., Amitrano C., Balzano A., Cirillo C., Izzo L.G., Vitale E., Arena C. 2023. Anthropogenic Dusts Influence Leaf Anatomical and Eco-Physiological Traits of Black Locust (
Robinia pseudoacacia L.) Growing on Vesuvius Volcano. Forests 14(2): 212.
https://doi.org/10.3390/f14020212
Erol K., Cebeci B.K., Köse K., Köse D.A. 2019. Effect of immobilization on the activity of catalase carried by poly (HEMA-GMA) cryogels. International Journal of Biological Macromolecules 123: 738-743.
https://doi.org/10.1016/j.ijbiomac.2018.11.121
Fusaro L., Salvatori E., Winkler A., Frezzini M.A., De Santis E., Sagnotti L., Canepari S., Manes F. 2021. Urban trees for biomonitoring atmospheric particulate matter: An integrated approach combining plant functional traits, magnetic and chemical properties. Ecological Indicators 126: 107707.
https://doi.org/10.1016/j.ecolind.2021.107707
Gawęda D., Nowak A., Haliniarz M., Woźniak A. 2020. Yield and economic effectiveness of soybean grown under different cropping systems. International Journal of Plant Production 14: 475-485.
https://doi.org/10.1007/s42106-020-00098-1
Gross A., Tiwari S., Shtein I., Erel R. 2021. Direct foliar uptake of phosphorus from desert dust. New Phytologist 230(6): 2213-2225.
https://doi.org/10.1111/nph.17344
Hariram M., Sahu R., Elumalai S.P. 2018. Impact assessment of atmospheric dust on foliage pigments and pollution resistances of plants grown nearby coal based thermal power plants. Archives of Environmental Contamination and Toxicology 74: 56-70.
https://doi.org/10.1007/s00244-017-0446-1
Hatami Z., Rezvani Moghaddam P., Rashki A., Mahallati M.N., Habibi Khaniani B. 2018. Effects of desert dust on yield and yield components of cowpea (
Vigna unguiculata L.). Archives of Agronomy and Soil Science 64(10): 1446-1458.
https://doi.org/10.1080/03650340.2018.1440081
Inskeep W.P., Bloom P.R. 1985. Extinction coefficients of chlorophyll a and b in N, N-dimethylformamide and 80% acetone. Plant Physiology 77(2): 483-485.
https://doi.org/10.1104/pp.77.2.483
Lamare R.E., Singh O. 2020. Effect of cement dust on soil physico-chemical properties around cement plants in Jaintia Hills, Meghalaya. Environmental Engineering Research 25(3): 409-417.
https://doi.org/10.4491/eer.2019.099
Lhotská M., Zemanová V., Pavlík M., Pavlíková D., Hnilička F., Popov M. 2022. Leaf fitness and stress response after the application of contaminated soil dust particulate matter. Scientific Reports 12(1): 10046.
https://doi.org/10.1038%2Fs41598-022-13931-6
Li C., Du D., Gan Y., Ji S., Wang L., Chang M., Liu J. 2022. Foliar dust as a reliable environmental monitor of heavy metal pollution in comparison to plant leaves and soil in urban areas. Chemosphere 287: 132341.
https://doi.org/10.1016/j.chemosphere.2021.132341
Maletsika P.A., Nanos G.D., Stavroulakis G.G. 2015. Peach leaf responses to soil and cement dust pollution. Environmental Science and Pollution Research 22: 15952–15960.
https://doi.org/10.1007/s11356-015-4821-z
Meravi N., Singh P.K., Prajapati S.K. 2021. Seasonal variation of dust deposition on plant leaves and its impact on various photochemical yields of plants. Environmental Challenges 4: 100166.
https://doi.org/10.1016/j.envc.2021.100166
Najafi Zilaie M., Mosleh Arani A., Etesami H., Dinarvand M. 2022. Improved salinity and dust stress tolerance in the desert halophyte Haloxylon aphyllum by halotolerant plant growth-promoting rhizobacteria. Frontiers in Plant Science 13: 948260.
https://doi.org/10.3389%2Ffpls.2022.948260
Nawaz M.F., Rashid M.H., Saeed-Ur-Rehman M., Gul S., Farooq T.H., Sabir M.A., Iftikhar J., Abdelsalam N.R., Dessoky E.S., Alotaibi S.S. 2022. Effect of Dust Types on the Eco-Physiological Response of Three Tree Species Seedlings: Eucalyptus camaldulensis, Conocarpus erectus and Bombax ceiba. Atmosphere 13(7): 1010.
https://doi.org/10.3390/atmos13071010
Perini K., Ottelé M., Giulini S., Magliocco A., Roccotiello E. 2017. Quantification of fine dust deposition on different plant species in a vertical greening system. Ecological Engineering 100: 268-276.
https://doi.org/10.1016/j.ecoleng.2016.12.032
Ranjbar S., Ghobadi M., Ghobadi M. 2021. Influence of dust deposition and light intensity on yield and some agro-physiologic characteristics of chickpea (
Cicer arietinum L.) in dry conditions. Iranian Journal Pulses Research 12(2): 69-84.
https://doi.org/10.22067/ijpr.v12i2.86464
Semerjian L., Okaiyeto K., Ojemaye M.O., Ekundayo T.C., Igwaran A., Okoh A.I. 2021. Global Systematic Mapping of Road Dust Research from 1906 to 2020: Research Gaps and Future Direction Sustainability 13(20): 1-21: 11516.
https://doi.org/10.3390/su132011516
Shah K., Amin N., Ahmad I., Shah S., Hussain K. 2017. Dust particles induce stress, reduce various photosynthetic pigments and their derivatives in Ficus benjamina: a landscape plant. International Journal of Agriculture And Biology 19: 1469-1474.
https://doi.org/10.17957/IJAB/15.0445
Shah K., Amin N.U., Ahmad I., Ara G. 2018. Impact assessment of leaf pigments in selected landscape plants exposed to roadside dust. Environmental Science and Pollution Research 25: 23055-23073.
https://doi.org/10.1007/s11356-018-2309-3
Shah K., Amin N.U., Ahmad I., Ara G., Rahman M.U., Zuo X., Xing L., Ren X. 2019. Cement dust induce stress and attenuates photosynthesis in Arachis hypogaea. Environmental Science and Pollution Research 26: 19490-19501.
https://doi.org/10.1007/s11356-019-04861-4
Shah K., An N., Ma W., Ara G., Ali K., Kamanova S., Zuo X., Han M., Ren X., Xing L. 2020. Chronic cement dust load induce novel damages in foliage and buds of
Malus domestica. Scientific Reports 10(1): 12186.
https://doi.org/10.1038%2Fs41598-020-68902-6
Sharifi Kaliani F., Babaei S., ZafarSohrabpour Y. 2021. Study of the effects of dusts on the morphological and physiological traits of some crops. Journal of Plant Production Research 28(3): 205-220. (In Farsi).
https://doi.org/10.22069/jopp.2021.18782.2768
Singh S., Bhattacharya P., Gupta N. 2018. Dust particles characterization and innate resistance for Thevetia peruviana in different land-use pattern of urban area. International Journal of Environmental Science and Technology 15: 1061-1072.
https://doi.org/10.1007/s13762-017-1461-5
Suchkov D.K., Aygumov T.G., Rudnev S.G., Michurina N.Y. 2022. The influence of environmental factors on the development of agricultural production. IOP Conference Series: Earth and Environmental Science 1045: 012095.
https://doi.org/10.1088/1755-1315/1045/1/012095
Velayatzadeh M. 2020. Introducing the causes, origins and effects of dust in Iran. Journal of Air Pollution and Health 5(1): 63-70. file:///C:/Users/faride/Downloads/233-Article%20Text-1465-1-10-20200531.pdf
Wehner G., Balko C., Ordon F. 2016. Experimental design to determine drought stress response and early leaf senescence in barley (
Hordeum vulgare L.). Bio-protocol 6(5): 1-16.
http://www.bio-protocol.org/e1749
Zhang W., Zhang Y., Gong J., Yang B., Zhang Z., Wang B., Zhu C., Shi J., Yue K. 2020. Comparison of the suitability of plant species for greenbelt construction based on particulate matter capture capacity, air pollution tolerance index, and antioxidant system. Environmental Pollution 263: 114615.
https://doi.org/10.1016/j.envpol.2020.114615
Zia-Khan S., Spreer W., Pengnian Y., Zhao X., Othmanli H., He X., Müller J. 2015. Effect of dust deposition on stomatal conductance and leaf temperature of cotton in northwest China. Water 7(1): 116-131.
https://doi.org/10.3390/w7010116