Evaluation of Genetic Distance and Similarity among Native Genotypes of Seeded Watermelon (Citrullus lanatus var. citroides) in the Khorasan Region Using Microsatellite Markers

Document Type : Original Article

Authors

1 Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran

2 Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948978, Iran

3 Department of Agronomy and Plant Breeding, Agriculture Institute, Research Institute of Zabol, Zabol, Iran

Abstract

Citrullus lanatus var. citroides is one of the Khorasan region's major rainfed and cash crops. It is typically grown on marginal lands and mostly dependent on rainfall. Microsatellite markers were therefore employed in this study to determine the genetic diversity among the genotypes from these important production zones in the provinces of Razavi and North Khorasan in order to be used in the future breeding programs of this crop. With the aid of 15 pairs of microsatellite primers (SSR), the genetic diversity among 17 genotypes of C. Lanatus var. citroides collected from various parts of Khorasan province along with one edible variety (Ed) was examined in this study. These markers allowed for the DNA fingerprinting of genotypes, in which 11 markers were polymorphic. In two cases, the polymerase chain reaction (PCR) products were monomorphic and shared by all genotypes, but in the other two, no detectable PCR product was observed. The range of the polymorphic information content (PIC) was 0.13 to 0.86. The genetic similarity among genotypes was determined to be between 15% and 55% using the Jaccard similarity matrix in the NTSYS program (Ver. 2.02). Three major groups were formed by clustering 17 genotypes using the UPGMA method and the Jaccard similarity coefficient. These findings demonstrated that the Ed variety was classified into a different group due to its significant genetic differences from other seeded watermelon genotypes. While verifying the significant amount of genotype diversity, the results of principal component analysis (PCA) of the data were highly in agreement with those of cluster analysis, making the similarities of genetic relationships very clear. This study could be significant in terms of the first steps toward identifying genetic diversity and maintaining genetic reserves in native genotypes of seeded watermelon for future breeding purposes.

Graphical Abstract

Evaluation of Genetic Distance and Similarity among Native Genotypes of Seeded Watermelon (Citrullus lanatus var. citroides) in the Khorasan Region Using Microsatellite Markers

Highlights

  • In total, 65 bands were amplified in all genotypes, in which 63 were polymorphic.
  • The highest PIC (0.86) was associated with primer P6.
  • The average amount of polymorphic information in the current study was greater than 50%.

Keywords

Main Subjects


Adeyemo O., Adegoke S., Oladapo D., Amaghereonu C.C., Thomas A., Ebirikwem E.E., Adeyinka B., Amoda W. 2020. Transferability of SSR Markers used for Assessment of Genetic Relationship in Five Species/Genera in Cucurbitaceae. Egyptian Journal of Botany 60(1): 275-286. https://dx.doi.org/10.21608/ejbo.2019.13562.1324
Agrama H., Tuinstra M. 2003. Phylogenetic diversity and relationships among sorghum accessions using SSRs and RAPDs. African Journal of Biotechnology 2(10): 334-340. https://doi.org/10.5897/AJB2003.000-1069
Amzeri A., Badami K., Gita P., Syah M.A., Daryono B.S. 2021. Phenotypic and genetic diversity of watermelon (Citrullus lanatus) in East Java, Indonesia. Biodiversitas Journal of Biological Diversity 22(11). https://doi.org/10.13057/biodiv/d221161
Anter A.S. 2023. Induced Mutation to Enhance Plant Biodiversity and Genetic Resources for Intensification of Crop Production to Mitigate Climatic Changes. IntechOpen. https://doi.org/10.5772/intechopen.108117
Asha K.I., Aswani S.A., Radhika N.K., Krishnan B.P. 2023. Genetic variability and diversity analysis of Chinese potato (Solenostemon rotundifolius (poir.) JK Morton) germplasm using morphological and molecular markers. South African Journal of Botany 155: 171-177. https://doi.org/10.1016/j.sajb.2023.02.014
Bahraminejad A., Mohammadi-Nejad G., Abdul Kadir K., Bin Yusop M.R., Samia M.A. 2012. Molecular diversity of Cumin (Cuminum cyminum L.) using RAPD markers. Australian Journal of Crop Science 6(2): 194-199. http://www.cropj.com/bahramnejad_6_2_2012_194_199.pdf
Bohn M., Utz H.F., Melchinger A.E. 1999. Genetic similarities among winter wheat cultivars determined on the basis of RFLPs, AFLPs, and SSRs and their use for predicting progeny variance. Crop Science 39(1): 228-237. https://doi.org/10.2135/cropsci1999.0011183X003900010035x
Bryan G., Collins A., Stephenson P., Orry A., Smith J., Gale M. 1997. Isolation and characterisation of microsatellites from hexaploid bread wheat. Theoretical and Applied Genetics 94(5): 557-563. https://doi.org/10.1007/s001220050451
Chu S., Wang S., Zhang R., Yin M., Yang X., Shi Q. 2022. Integrative analysis of transcriptomic and metabolomic profiles reveals new insights into the molecular foundation of fruit quality formation in Citrullus lanatus (Thunb.) Matsum. & Nakai. Food Quality and Safety 6: fyac015. https://doi.org/10.1093/fqsafe/fyac015
Deng S.Y., Wang X.R., Zhu P.L., Wen Q., Yang C.X. 2015. Development of polymorphic microsatellite markers in the medicinal plant Gardenia jasminoides (Rubiaceae). Biochemical Systematics and Ecology 58: 149-155. https://doi.org/10.1016/j.bse.2014.11.009
Fallahi F., Abdossi V., Bagheri M., Ghanbari Jahromi M., Mozafari H. 2022. Genetic diversity analysis of Eggplant Germplasm from Iran: assessments by morphological and SSR markers. Mol Biol Rep 49(12): 11705-11714. https://doi.org/10.1007/s11033-022-07768-5
Gao Z., Yun L., Li Z., Liu Q., Zhang C., Ma Y., Shi F. 2022. Hybrid purity identification using EST-SSR markers and heterosis analysis of quantitative traits of Russian wildrye. PeerJ 10: e14442. https://doi.org/10.7717/peerj.14442
Gbotto A.A., Yao N.K., Kitavi M., Osama S.K., Habimana R., Koffi K.K., Bi I.A.Z. 2022. Genetic characterization of oleaginous bottle gourd (Lagenaria siceraria) germplasm from Côte d'Ivoire using agromorphological and molecular markers. Plant Genetic Resources 2022: 1-12. https://doi.org/10.1017/S1479262122000247
Grumet R., McCreight J.D., McGregor C., Weng Y., Mazourek M., Reitsma K., Labate J., Davis A., Fei Z. 2021. Genetic Resources and Vulnerabilities of Major Cucurbit Crops. Genes (Basel) 12(8): 1222. https://doi.org/10.3390/genes12081222
Guo S., Zhao S., Sun H., Wang X., Wu S., Lin T., Ren Y., Gao L., Deng Y., Zhang J., Lu X. 2019. Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Nature genetics 51(11): 1616-1623. https://doi.org/10.1038/s41588-019-0518-4
Hanif R., Yaqoob M., Ayoub L., Irshad S., Siraj M., Wani F.F., Bhat S., Farook U.B., Sheikh M.A., Rasool J., Mathumitaa P. 2022. Role of insect pollinators in pollination of cucumber. Role of insect pollinators in pollination of cucumber. The Pharma Innovation Journal 11(4S): 1348-1354. https://www.thepharmajournal.com/archives/2022/vol11issue4S/PartQ/S-11-4-34-737.pdf
Honari F., Vessal S., Babaean Jelodar N.A. 2017. Assessment of Genetic Diversity for some Candidate Edible Seed Watermelon Genotypes using SSR Markers and Morphological Traits. Journal of Crop Breeding 9(22): 14-22. http://dx.doi.org/10.29252/jcb.9.22.14
Jaccard P. 1912. The distribution of the flora in the alpine zone. New phytologist 11(2): 37-50. https://doi.org/10.1111/j.1469-8137.1912.tb05611.x 
Janipour L., Fahmideh L., Fazeli-Nasab B. 2018. Genetic evaluation of different population of Cumin (Cuminum cyminum L.) using DNA molecular markers. Journal of Cellular and Molecular Researches 31(1): 16-32. (In Farsi). https://dorl.net/dor/20.1001.1.23832738.1397.31.1.1.7
Jomeh Ghasem Abadi Z., Fakheri B., Fazeli-Nasab B. 2019a. Bioinformatics Analysis and characterization of RuBisCO's large subunit in some lettuce genotypes. Agricultural Biotechnology Journal 11(3): 1-18. (In Farsi). https://doi.org/10.22103/jab.2019.14215.1140
Jomeh Ghasem Abadi Z., Fakheri B., Fazeli-Nasab B. 2019b. Study of the Molecular Diversity of Internal Transcribed Spacer Region (ITS1.4) in Some Lettuce Genotypes. [Research]. Journal of Crop Breeding 11(29): 29-39. (In Farsi). https://doi.org/10.29252/jcb.11.29.29
Joobeur T., Gusmini G., Zhang X., Levi A., Xu Y., Wehner T., Oliver M., Dean R. 2006. Construction of a watermelon BAC library and identification of SSRs anchored to melon or Arabidopsis genomes. Theoretical and Applied Genetics 112: 1553-1562. https://doi.org/10.1007/s00122-006-0258-6
Kwon Y.S., Oh Y.H., Yi S.I., Kim H.Y., An J.M., Yang S.G., Ok S.H., Shin J.S. 2010. Informative SSR markers for commercial variety discrimination in watermelon (Citrullus lanatus). Genes & Genomics 32: 115-122. https://doi.org/10.1007/s13258-008-0674-x 
Levi A., Thomas C., Trebitsh T., Salman A., King J., Karalius J., Newman M., Reddy O., Xu Y., Zhang X. 2006. An extended linkage map for watermelon based on SRAP, AFLP, SSR, ISSR, and RAPD markers. Journal of the American Society for Horticultural Science 131(3): 393-402. https://doi.org/10.21273/JASHS.131.3.393
Maccaferri M., Sanguineti M., Donini P., Tuberosa R. 2003. Microsatellite analysis reveals a progressive widening of the genetic basis in the elite durum wheat germplasm. Theoretical and Applied Genetics 107: 783-797. https://doi.org/10.1007/s00122-003-1319-8
Mahapatra S., Sureja A.K., Behera T.K., Verma M. 2022. Assessment of genetic diversity of ninety-one bottle gourd [Lagenaria siceraria (Mol.) Standl.] genotypes from fourteen different agro-climatic zones of India using agro-morphological traits and SSR markers. Molecular Biology Reports 49(7): 6367-6383. https://doi.org/10.1007/s11033-022-07446-6
Maragal S., Rao E.S., Reddy D.L. 2023. Genetic mapping and meta-analysis identifies several candidate genes for watermelon (Citrullus lanatus) fruit quality traits. Scientia Horticulturae 308: 111545. https://doi.org/10.1016/j.scienta.2022.111545
Mhlaba Z.B., Amelework B., Shimelis H.A., Modi A. T., Mashilo J. 2018. Genetic interrelationship among tepary bean (Phaseolus acutifolius A. Gray) genotypes revealed through SSR markers. Australian Journal of Crop Science 12(10): 1587-1595. https://doi.org/10.21475/ajcs.18.12.10.p1129
Mujaju C., Sehic J., Werlemark G., Garkava‐Gustavsson L., Fatih M., Nybom H. 2010. Genetic diversity in watermelon (Citrullus lanatus) landraces from Zimbabwe revealed by RAPD and SSR markers. Hereditas 147(4): 142-153. https://doi.org/10.1111/j.1601-5223.2010.02165.x
Nei M., Li W.H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences 76(10): 5269-5273. https://doi.org/10.1073/pnas.76.10.5269
Ouyang Y., Li X., Zhang Q. 2022. Understanding the genetic and molecular constitutions of heterosis for developing hybrid rice. J Genet Genomics 49(5): 385-393. https://doi.org/10.1016/j.jgg.2022.02.022
Pahlavan A., Solouki M., Fakheri B., Fazeli-Nasab B. 2021. Using Morphological and Phytochemical Traits and ITS (1, 4) and rbcl DNA Barcodes in the Assessment of Different Malva sylvestris L. Genotypes. Journal of Medicinal plants and By-product 10(1): 19-35. (In Farsi). https://doi.org/10.22092/jmpb.2020.343520.1232
Pal S., Revadi M., Thontadarya R., Reddy D.L., Varalakshmi B., Pandey C.D., Rao E.S. 2020. Understanding genetic diversity, population structure and development of a core collection of Indian accessions of watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai). Plant Genetic Resources 18(5): 359-368. https://doi.org/10.1017/S1479262120000386
Parashar M., Jakhar M., Malik C. 2014. A review on biotechnology, genetic diversity in cumin (Cuminum cyminum). International Journal of Life Science and Pharma Research 4(4): L17-L34.
Prasad M., Varshney R.K., Roy J., Balyan H., Gupta P. 2000. The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theoretical and Applied Genetics 100(3-4): 584. https://doi.org/10.1007/s001220050077
Roder M.S., Plaschke J., König S.U., Börner A., Sorrells M.E., Tanksley S.D., Ganal M.W. 1995. Abundance, variability and chromosomal location of microsatellites in wheat. Molecular and General Genetics MGG 246(3): 327-333. https://doi.org/10.1007/BF00288605
Sakran R.M., Ghazy M.I., Rehan M., Alsohim A.S., Mansour E. 2022. Molecular Genetic Diversity and Combining Ability for Some Physiological and Agronomic Traits in Rice under Well-Watered and Water-Deficit Conditions. Plants (Basel) 11(5). https://doi.org/10.3390/plants11050702
Seidler-Łożykowska K., Kuczyńska A., Mikołajczyk K., Nowakowska J., Bocianowski J. 2014. Estimation of genetic distance among genotypes of caraway (Carum carvi L.) using RAPD-PCR. Acta Scientiarum. Agronomy 36(2): 183-188. https://doi.org/10.4025/actasciagron.v36i2.18197
Shaygan N., Etminan A., Majidi Hervan I., Azizinezhad R., Mohammadi R. 2021. The study of genetic diversity in a minicore collection of durum wheat genotypes using agro-morphological traits and molecular markers. Cereal Research Communications 49: 141-147. https://doi.org/10.1007/s42976-020-00073-6
Singh U., Kumar S., Yadav K. 2022. Genetic variability and correlation studies in various genotypes of watermelon [Citrullus lanatus (Thunb.) Mansf.]. Journal of Agriculture and Ecology 13: 65-78. https://doi.org/10.53911/JAE.2022.13107
Suri G.K., Braich S., Noy D.M., Rosewarne G.M., Cogan N.O.I., Kaur S. 2022. Advances in lentil production through heterosis: Evaluating generations and breeding systems. PLoS One 17(2): e0262857. https://doi.org/10.1371/journal.pone.0262857
Vaez-Sarvari H., Emamjomeh A., Fazeli-Nasab B. 2022. Evaluation of genetic diversity of Cantaloupe landraces based on the internal transcriptional spacer regions (ITS1, 4). International Journal of Vegetable Science: 1-13. https://doi.org/10.1080/19315260.2022.2051664
van Hulten M.H.A., Paulo M.J., Kruijer W., Blankestijn-De Vries H., Kemperman B., Becker F.F.M., Yang J., Lauss K., Stam M.E., van Eeuwijk F.A., Keurentjes J.J.B. 2018. Assessment of heterosis in two Arabidopsis thaliana common-reference mapping populations. PLoS One 13(10): e0205564. https://doi.org/10.1371/journal.pone.0205564
Vivodik M., Balazova Z., Chnapek M., Hromadova Z., Mikolasova L., Galova Z. 2022. Molecular characterization and genetic diversity studie of soybean (Glycine max l.) Cultivars using rapd markers. Journal of microbiology, biotechnology and food sciences 12: e9219-e9219. https://doi.org/10.55251/jmbfs.9219
Zargaran Khouzani M.R. 2021. Utilization of camelthorn (Alhagi maurorum) to produce organic rain-fed watermelon to promote the sustainable development of the agricultural sector in arid and semi-arid regions. Central Asian Journal of Environmental Science and Technology Innovation 2(4): 156-163. https://www.cas-press.com/article_138802.html
Zhang H., Wang H., Guo S., Ren Y., Gong G., Weng Y., Xu Y. 2012. Identification and validation of a core set of microsatellite markers for genetic diversity analysis in watermelon, Citrullus lanatus Thunb. Matsum. & Nakai. Euphytica 186: 329-342. https://doi.org/10.1007/s10681-011-0574-z
Zhou C., Wang P., Zeng Q., Zeng R., Hu W., Sun L., Liu S., Luan F., Zhu Q. 2023. Comparative chloroplast genome analysis of seven extant Citrullus species insight into genetic variation, phylogenetic relationships, and selective pressure. Scientific Reports 13(1): 6779. https://doi.org/10.1038/s41598-023-34046-6
Zhou H.F., Xie Z.W., Ge S. 2003. Microsatellite analysis of genetic diversity and population genetic structure of a wild rice (Oryza rufipogon Griff.) in China. Theoretical and Applied Genetics 107(2): 332-339. https://doi.org/10.1007/s00122-003-1251-y