Carvalho Y.G., Vitorino L.C., Souza U.J.D., Bessa L.A. 2019. Recent trends in research on the genetic diversity of plants: implications for conservation. Diversity 11(4): 62.
https://doi.org/10.3390/d11040062
Dierck R., De Keyser E., De Riek J., Dhooghe E., Van Huylenbroeck J., Prinsen E., Van Der Straeten D. 2016. Change in auxin and cytokinin levels coincides with altered expression of branching genes during axillary bud outgrowth in Chrysanthemum. PloS one 11(8): e0161732.
https://doi.org/10.1371/journal.pone.0161732
Genesio L., Bright R.M., Alberti G., Peressotti A., Delle Vedove G., Incerti G., Toscano P., Rinaldi M., Muller O., Miglietta F. 2020. A chlorophyll-deficient, highly reflective soybean mutant: radiative forcing and yield gaps. Environmental Research Letters 15(7): 074014.
https://doi.org/10.1088/1748-9326/ab865e
Guo Y., Liu C., Long W., Gao J., Zhang J., Chen S., Pu H., Hu M. 2022. Development and molecular analysis of a novel acetohydroxyacid synthase rapeseed mutant with high resistance to sulfonylurea herbicides. The Crop Journal 10(1): 56-66.
https://doi.org/10.1016/j.cj.2021.05.006
Kouighat M., Hanine H., El Fechtali M., Nabloussi A. 2021. First report of sesame mutants tolerant to severe drought stress during germination and early seedling growth stages. Plants 10(6): 1166.
https://doi.org/10.3390/plants10061166
Neumann N.G., Nazarenus T.J., Aznar-Moreno J.A., Rodriguez-Aponte S.A., Veintidos V.A.M., Comai L., Durrett T.P., Cahoon, E.B. 2021. Generation of camelina mid-oleic acid seed oil by identification and stacking of fatty acid biosynthetic mutants. Industrial crops and Products 159: 113074.
https://doi.org/10.1016/j.indcrop.2020.113074
Rampure N. H., Choudhary A.D., Jambhulkar S.J., Badere R.S. 2017. Isolation of desirable mutants in safflower for crop improvement. Indian Journal of Genetics and Plant Breeding 77(01), 134–144.
https://doi.org/10.5958/0975-6906.2017.00018.9
Rostami Ahmadvandi H., Faghihi A. 2021. Adapted oilseed crops with the ability to grow economically in dryland conditions in Iran. Agrotechniques in Industrial Crops 1(3): 122-128.
https://doi.org/10.22126/atic.2021.6518.1015
Scartazza A, Fambrini M, Mariotti L, Picciarelli P, Pugliesi C. 2020. Energy conversion processes and related gene expression in a sunflower mutant with altered salicylic acid metabolism. Plant Physiology and Biochemistry 148: 122-132.
https://doi.org/10.1016/j.plaphy.2020.01.005
Verdura S., Cuyàs E., Lozano-Sánchez J., Bastidas-Velez C., Llorach-Parés L., Fernández-Arroyo S., Hernández-Aguilera A., Joven J., Nonell-Canals A., Bosch-Barrera J., Martin-Castillo B. 2019. An olive oil phenolic is a new chemotype of mutant isocitrate dehydrogenase 1 (IDH1) inhibitors. Carcinogenesis 40(1): 27-40.
https://doi.org/10.1093/carcin/bgy159
Yang Y.X., Wu W., Zheng Y.L., Chen L., Liu R.J., Huang C.Y. 2007. Genetic diversity and relationships among safflower (
Carthamus tinctorius L.) analyzed by inter-simple sequence repeats (ISSRs). Genetic Resources and Crop Evolution 54(5): 1043-1051.
https://doi.org/10.1007/s10722-006-9192-3
Zhang T., Hu F., Ma L. 2019. Phosphate-solubilizing Bacteria from Safflower Rhizosphere and their Effect on Seedling Growth. Open Life Sciences 14: 246-254.
https://doi.org/10.1515/biol-2019-0028
Zhu Q.H., Stiller W., Moncuquet P., Gordon S., Yuan Y., Barnes S., Wilson I. 2021. Genetic mapping and transcriptomic characterization of a new fuzzless-tufted cottonseed mutant. G3 11(1): jkaa042.
https://doi.org/10.1093/g3journal/jkaa042