Genetic Variability and Resistance to Orobanche in Oriental Nicotiana tabacum L.

Document Type : Review Article

Authors

Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran

Abstract

Broomrape as an obligate parasite that threatens tobacco production (Nicotiana tabacum L.), has destructive effects on its characteristics. The reduction in yield caused by this parasite is so great that sometimes farmers are forced to leave their fields due to the severity of the infection. Since the stages of contamination and pathogenicity mainly occur underground, and the major damage of the parasite to host plants produce before the diagnosis of contamination, the development of effective controlling strategies is a great challenge in front of scientists. Unfortunately, no control method (agricultural, chemical, mechanical, etc.) has been effective so far. The lack of effective agro-chemical controlling methods makes the need more obvious for biotechnological methods. Host resistance as an integrated pest management method is a multifaceted process that can occur at several stages of the parasite's life cycle; before attaching to the host during root penetration, or after attaching to the phloem. In recent years, various breeding activities have been started to develop “Orobanche-resistant” genotypes. In this paper, the conducted research activities on the genetic variability and resistance of tobacco to broomrape have been reviewed. The results determine the importance and also the path to achieving “Orobanche-resistant” varieties.

Graphical Abstract

Genetic Variability and Resistance to Orobanche in Oriental Nicotiana tabacum L.

Highlights

  • The conducted researches activities on the genetic variability and resistance of tobacco to broomrape have been reviewed.
  • The results determine the importance as well as the path to achieving “Orobanche-resistant” varieties.

Keywords

Main Subjects


Abbes Z., Kharrat M., Delavault P., Chaïbi W., Simier P. 2009. Nitrogen and carbon relationships between the parasitic weed Orobanche foetida and susceptible and tolerant faba bean lines. Plant Physiology and Biochemistry 47(2): 153-159. https://doi.org/10.1016/j.plaphy.2008.10.004
Abedi S., Darvishzadeh R., Bernousi I., Mandoulakani B.A., Maleki H.H., Shah D. 2014. Genetic variability of Orobanche aegyptiaca infesting tobacco in Iran by bayesian analysis. Biologia 69(12): 1652-1659. https://doi.org/10.2478/s11756-014-0473-6
Aly R. 2007. Conventional and biotechnological approaches for control of parasitic weeds. In Vitro Cellular & Developmental Biology – Plant 43 (4): 304-317. https://doi.org/10.1007/s11627-007-9054-5
Aly R., Cholakh H., Joel D.M., Leibman D., Steinitz B., Zelcer A., Naglis A., Yarden O., Gal‐On A. 2009. Gene silencing of mannose 6‐phosphate reductase in the parasitic weed Orobanche aegyptiaca through the production of homologous dsRNA sequences in the host plant. Plant Biotechnology Journal 7(6): 487-498. https://doi.org/10.1111/j.1467-7652.2009.00418.x
Bindler G., Hoeven R., Gunduz I., Plieske J., Ganal M., Rossi L., Gadani F., Donini P. 2007. A microsatellite marker based linkage map of tobacco. Theoretical and Applied Genetics 114: 341-349. https://doi.org/10.1007/s00122-006-0437-5
Bindler G., Plieske J., Bakaher N., Gunduz I., Ivanov N., Vander Hoeven R., Ganal M., Donini, P. 2011. A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theoretical and Applied Genetics 123(2): 219-230. https://doi.org/10.1007/s00122-011-1578-8
Buschmann H., Gonsior G., Sauerborn J. 2005. Pathogenicity of branched broomrape (Orobanche ramosa) populations on tobacco cultivars. Plant Pathology 54(5): 650-656. https://doi.org/10.1111/j.1365-3059.2005.01211.x
Darvishzadeh R. 2016. Genetic variability, structure analysis, and association mapping of resistance of resistance to broomrape (Orobanche aegyptiaca Pers.) in tobacco. Journal of Agricultural Science and Technology 18(5): 1419-1429. http://dorl.net/dor/20.1001.1.16807073.2016.18.5.1.7
Davalieva K., Maleva I., Filiposki K., Spiroski O., Georgi D. 2010. Genetic variability of Macedonian tobacco varieties determined by microsatellite marker analysis. Diversity 2(4): 439-449. https://doi.org/10.3390/d2040439
Delavault P., Simier P., Thoiron S., Véronési C., Fer A., Thalouarn P. 2002. Isolation of mannose 6-phosphate reductase cDNA, changes in enzyme activity and mannitol content in broomrape (Orobanche ramosa) parasitic on tomato roots. Physiologia Plantarum 115(1): 48-55. https://doi.org/10.1034/j.1399-3054.2002.1150105.x
Dubey N.K., Eizenberg H., Leibman D., Wolf D., Edelstein M., Abu-Nassar J., Marzouk S., Gal-On A., Aly R. 2017. Enhanced host-parasite resistance based on down-regulation of Phelipanche aegyptiaca target genes is likely by mobile small RNA. Frontiers in Plant Science 8: 1574. https://doi.org/10.3389/fpls.2017.01574
Farrokhi Z., Alizadeh H., Alizadeh H. 2019a. Developmental patterns of enzyme activity, gene expression, and sugar content in sucrose metabolism of two broomrape species. Plant Physiology and Biochemistry 142: 8-14. https://doi.org/10.1016/j.plaphy.2019.06.014
Farrokhi Z., Alizadeh H., Alizadeh H., Mehrizi F.A. 2019b. Host-induced silencing of some important genes involved in osmoregulation of parasitic plant Phelipanche aegyptiaca. Molecular Biotechnology 61(12): 929-937. https://doi.org/10.1007/s12033-019-00215-0
Fer A., Russo N., Simier P., Arnaud M-C., Thalouarn P. 1994. Physiological changes in a root hemiparasitic angiosperm, Thesium humile (Santalaceae), before and after attachment to the host plant (Triticum vulgare). Journal of Plant Physiology 143(6): 704-710. http://dx.doi.org/10.1016/S0176-1617(11)81161-2
Fernández-Aparicio M., Reboud X., Gibot-Leclerc S. 2016. Broomrape weeds. Underground mechanisms of parasitism and associated strategies for their control: A review. Frontiers in Plant Science 7: 135. https://doi.org/10.3389/fpls.2016.00135
Giannelos P.N., Zannikos F., Stournas S., Lois E., Anastopoulos G. 2002. Tobacco seed oil as an alternative diesel fuel: physical and chemical properties. Industrial Crops and Products 16(1): 1-9. https://doi.org/10.1016/S0926-6690(02)00002-X
Goldwasser Y., Hershenhorn J., Plakhine D., Kleifeld Y., Rubin B. 1999. Biochemical factors involved in vetch resistance to Orobanche aegyptiaca. Physiological and Molecular Plant Pathology 54(3-4): 87-96. https://doi.org/10.1006/pmpp.1998.0191
Hasan N., Choudhary S., Naaz N., Sharma N., Laskar R.A. 2021. Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. Journal of Genetic Engineering and Biotechnology 19(1): 128. https://doi.org/10.1186/s43141-021-00231-1
Hu L., Wang J., Yang C., Islam F., Bouwmeester H.J., Muños S., Zhou W. 2020. The Effect of Virulence and Resistance Mechanisms on the Interactions between Parasitic Plants and Their Hosts. International Journal of Molecular Sciences 21(23): 9013. https://doi.org/10.3390/ijms21239013
Linke K.H.,  Abd El-Moneim A.M.,  Saxena M.C. 1993. Variation in resistance of some forage legumes species to Orobanche crenata Forsk. Field Crops Research 32(3): 277-285. https://dx.doi.org/10.1016/0378-4290(93)90037-N
Morozov S.Y., Solovyev A.G., Kalinina N.O., Taliansky M.E. 2019. Double-Stranded RNAs in Plant Protection Against Pathogenic Organisms and Viruses in Agriculture. Acta Naturae 11(4): 13-21. https://doi.org/10.32607/20758251-2019-11-4-13-21
Musselman L.J. 1980. The biology of Striga, Orobanche, and other root parasitic weeds. Annual Review of Phytopathology 18: 463-489. https://doi.org/10.1146/annurev.py.18.090180.002335
Paran I., Gidoni D., Jacobsohn R. 1997. Variation between and within broomrape (Orobanche) species revealed by RAPD markers. Heredity 78: 68-74. https://doi.org/10.1038/hdy.1997.8
Parker C., Riches C.R. 1993. Parasitic weeds of the world: biology and control. CAB International, UK.
Pérez-de-Luque A., Moreno M.T., Rubiales, D. 2008. Host plant resistance against broomrapes (Orobanche spp.): defence reactions and mechanisms of resistance. Annals of Applied Biology 152: 131-141. https://doi.org/10.1111/j.1744-7348.2007.00212.x
Péron T., Véronési C., Mortreau E., Pouvreau J-B., Thoiron S., Leduc N., Delavault P., Simier P. 2012. Role of the sucrose synthase encoding PrSus1 gene in the development of the parasitic plant Phelipanche ramosa L.(Pomel). Molecular Plant-Microbe Interactions 25(3): 402-411. https://doi.org/10.1094/MPMI-10-11-0260
Pineda-Martos R., Pujadas-Salvà A.J., Fernández-Martínez J.M., Stoyanov K., Velasco L., Pérez-Vich B. 2014. The genetic structure of wild Orobanche cumana Wallr. (Orobanchaceae) populations in eastern Bulgaria reflects introgressions from weedy populations. Scientific World Journal 2014: 150432. https://doi.org/10.1155/2014/150432
Pineda-Martos R., Velasco L., Fernandez-Escobar J., Fernandez-Martinez J.M., Perez-Vich B. 2013. Genetic diversity of Orobanche cumana populations from Spain assessed using SSR markers. Weed Research 53(4): 279-289. https://doi.org/10.1111/wre.12022
Roman B., Alfaro C., Torres A.M., Moreno M.T., Satovic S., Pujadas A., Rubiales D. 2003. Genetic relationships among Orobanche species as revealed by RAPD analysis. Annals of Botany 91(6): 637-642. https://doi.org/10.1093/aob/mcg060
Rubiales D., Fernández-Aparicio M., Pérez-De-Luque A., Prats E., Castillejo M.A., Sillero J. C., Rispail N., Fondevilla, S. 2009. Breeding approaches for crenate broomrape (Orobanche crenata Forsk.) management in pea (Pisum sativum L.). Pest Management Science 65(5): 553-559. https://doi.org/10.1002/ps.1740
Schneeweiss G.M., Palomeque T., Colwell A.E., Weiss-Schneeweiss H. 2004. Chromosome numbers and karyotype evolution in holoparasitic Orobanche (Orobanchaceae) and related genera. American Journal of Botany 91(3): 439-448. https://doi.org/10.3732/ajb.91.3.439
Seyyed-Nazari R., Ghadimzadeh M., Darvishzadeh R., Alavi S.R. 2016. Diallel analysis for estimation of genetic parameters in oriental tabacco genotypes. Genetika 48(1): 125-137. http://dx.doi.org/10.2298/GENSR1601125S
Seyyed-Nazari R., Ghadimzadeh M., Darvishzadeh R., Alavi S.R. 2015. Invader shoots with invaded roots on diallel analysis of oriental tobacco genotypes under Egyptian broomrape stress. COMU Journal of Agriculture Faculty 3(2): 119-125.
Simier P., Renaudin S., Fer A. 1994. Characteristics of the mannitol pathway in a root hemiparasitic species, Thesium humile Vahl. (Santalaceae). Journal of Plant Physiology 143(1): 33-38. http://dx.doi.org/10.1016/S0176-1617(11)82094-8
Slavov S., Valkov V., Batchvarova R., Atanassova S., Alexandrova M., Atanassov, A. 2005. Chlorsulfuron resistant transgenic tobacco as a tool for broomrape control. Transgenic Research 14: 273-278. https://doi.org/10.1007/s11248-004-8081-9
Stewart G.R., Nour J., MacQueen M., Shah N. 1984. Aspects of the biochemistry of Striga. In Ayensu E.S., Doggett H., Keynes R.D., Marton-Lefevre J., Musselman L.U., Parker C., Pickering A. (eds.,) Striga: Biology and Control. ICSU Press, France, (p. 161-178).
Tahmasbali M., Fayaz Moghaddam A., Darvishzadeh R., Abbasi Holasou H. 2020a. Study on genetic diversity of some oriental and water pipe’s tobacco genotypes (Nicotiana tabacum L.) under Orobanche stress conditions by using multivariate statistical methods. Journal of Crop Breeding 12(34): 160-174. (In Farsi). http://dx.doi.org/10.29252/jcb.12.34.160
Tahmasbali M., Darvishzadeh R., Fayaz Moghaddam A. 2020b. Estimating Breeding Value of Agronomic Traits in Oriental Tobacco Genotypes under Broomrape Stress and Normal Conditions.  Plant Genetic Researches 7(1): 103-126. (In Farsi). http://dx.doi.org/10.52547/pgr.7.1.7
Tahmasbali M., Darvishzadeh R., Fayaz Moghaddam A. 2021a. Evaluation of oriental tobacco (Nicotiana tabacum L.) genotypes using selection indices under the presence and absence of broomrape conditions. Iranian Journal of Field Crop Science 52(3): 198-207.  (In Farsi). https://doi.org/10.22059/ijfcs.2020.300277.654707
Tahmasbali M., Darvishzadeh R., Fayaz Moghaddam A., Alipour H. 2021b. Selection of tolerant genotypes to broomrape Orobanche cernua stress in oriental tobacco Nicotiana tabacum genotypes using stress tolerance indices. Journal of Applied Research in Plant Protection 9(4): 83-100. (In Farsi). https://dx.doi.org/10.22034/arpp.2021.12247
Tahmasbali M., Darvishzadeh R., Fayaz Moghaddam A. 2022. Association analysis of morpho-phenological traits in oriental tobacco (Nicotiana tabacum L.) with SSR markers under presence and absence of orobanche conditions. Journal of Molecular and Cellular Research (Iranian Journal of Biology) 35(4): 579-594. https://dorl.net/dor/20.1001.1.23832738.1401.35.4.3.3
White T.L., Hodge G.R. 1988. Best linear prediction of breeding values in a forest tree improvement program. Theoretical and Applied Genetics 76: 719-727. https://doi.org/10.1007/BF00303518
Zwanenburg B., Mwakaboko A.S., Kannan C. 2016. Suicidal germination for parasitic weed control. Pest Management Science 72(11): 2016-2025. https://doi.org/10.1002/ps.4222