A.O.A.C. 1990. Official Methods of Analysis. 15th Edition, Association of Official Analytical Chemist. Washington DC. USA.
Al-aghabary K., Zhu Z., Shi Q. 2005. Influence of Silicon Supply on Chlorophyll Content, Chlorophyll Fluorescence, and Antioxidative Enzyme Activities in Tomato Plants Under Salt Stress. Journal of Plant Nutrition 27(12): 2101-2115.
https://doi.org/10.1081/PLN-200034641
Amiri-Darban N., Nourmohammadi G., Shirani Rad A.H., Mirhadi S.M.J., Majidi Heravan I. 2020. Investigating the Effect of Ammonium Sulfate and Potassium Sulfate Application on seed and Oil Yields of Camelina (
Camelina sativa L.) under Late-Season Drought Stress. Journal of Agricultural Science and Sustainable Production 30(2): 239-251.
https://dorl.net/dor/20.1001.1.24764310.1399.30.2.15.8. (In Farsi).
Blokhina O., Virolainen E., Fagerstedt K. V. 2003. Antioxidants, Oxidative Damage and Oxygen Deprivation Stress: a Review. Annals of Botany 91(2): 179-194.
https://doi.org/10.1093/aob/mcf118
Chen W., Yao X., Cai K., Chen J. 2011. Silicon Alleviates Drought Stress of Rice Plants by Improving Plant Water Status, Photosynthesis and Mineral Nutrient Absorption. Biological Trace Element Research 142(1): 67-76.
https://doi.org/10.1007/s12011-010-8742-x
Chérif M., Bélanger R.R. 1992. Use of potassium silicate amendments in recirculating nutrient solutions to suppress Pythium ultimum on long English cucumber. Plant Disease 76: 1008-1011.
https://doi.org/10.1094/PD-76-1008
de Lacerda C.F., Cambraia J., Oliva M.A., Ruiz H.A., Prisco J.T.N. 2003. Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environmental and Experimental Botany 49(2): 107-120.
https://doi.org/10.1016/S0098-8472(02)00064-3
Farooq M., Wahid A., Kobayashi N., Fujita D., Basra S.M.A. 2009. Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development 29(1): 185-212.
https://doi.org/10.1051/agro:2008021
Gan Y., Angadi S., Cutforth H., Potts D., Angadi V., McDonald C. 2004. Canola and mustard response to short periods of temperature and water stress at different developmental stages. Canadian Journal of Plant Science 84: 697-704.
https://doi.org/10.4141/P03-109
Gao X., Zou C., Wang L., Zhang F. 2006. Silicon Decreases Transpiration Rate and Conductance from Stomata of Maize Plants. Journal of Plant Nutrition, 29(9): 1637-1647.
https://doi.org/10.1080/01904160600851494
Gong H.J., Chen K.M., Chen G.C., Wang S.M., Zhang C.L. 2003. Effects of Silicon on Growth of Wheat Under Drought. Journal of Plant Nutrition 26(5): 1055-1063.
https://doi.org/10.1081/PLN-120020075
Gottardi S., Iacuzzo F., Tomasi N., Cortella G., Manzocco L., Pinton R., Römheld V., Mimmo T., Scampicchio M., Dalla Costa L., Cesco S. 2012. Beneficial effects of silicon on hydroponically grown corn salad (
Valerianella locusta (L.) Laterr) plants. Plant Physiology and Biochemistry 56: 14-23.
https://doi.org/10.1016/j.plaphy.2012.04.002
Guo Q., Meng L., Mao P., Tian X. 2013. Role of Silicon in Alleviating Salt-Induced Toxicity in White Clover. Bulletin of Environmental Contamination and Toxicology 91(2): 213-216.
https://doi.org/10.1007/s00128-013-1034-3
Haghighi M., Pessarakli M. 2013. Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (
Solanum lycopersicum L.) at early growth stage. Scientia Horticulturae 161: 111-117.
https://doi.org/10.1016/j.scienta.2013.06.034
Hasani Balyani M., Tadayon M.R., Fadaei Tehrani A.A. 2020. Evaluation of Some Growth and Yield Traits of Camelina sativa L. under the Influence of Biological and Chemical Fertilizers. [Research]. Isfahan University of Technology - Journal of Crop Production and Processing 10(1): 39-51.
https://doi.org/10.47176/jcpp.10.1.209111. (In Farsi).
Hashemi A., Abdolzadeh A., Sadeghipour H.R. 2010. Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, Brassica napus L., plants. Soil Science and Plant Nutrition 56(2): 244-253.
https://doi.org/10.1111/j.1747-0765.2009.00443.x
Hernández J.A., Ferrer M.A., Jiménez A., Barceló A.R., Sevilla F. 2001. Antioxidant systems and O(2)(.-)/H(2)O(2) production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiology 127(3): 817-831.
https://doi.org/10.1104/pp.010188
Kaya C., Tuna L., Higgs D. 2006. Effect of Silicon on Plant Growth and Mineral Nutrition of Maize Grown Under Water-Stress Conditions. Journal of Plant Nutrition 29(8): 1469-1480.
https://doi.org/10.1080/01904160600837238
Lee S., Sohn E., Hamayun M. 2010. Effect of Silicon on Growth and Salinity Stress of Soybean Plant Grown under Hydroponic System. Agroforestry Systems 80: 333-340.
https://doi.org/10.1007/s10457-010-9299-6
Liang Y., Chen Q.I.N., Liu Q., Zhang W., Ding R. 2003. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (
Hordeum vulgare L.). Journal of Plant Physiology 160(10): 1157-1164.
https://doi.org/10.1078/0176-1617-01065
Liang Y., Sun W., Zhu Y.G., Christie P. 2007. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environmental Pollution 147(2): 422-428.
https://doi.org/10.1016/j.envpol.2006.06.008
Liang Y., Zhang W., Chen Q., Ding R. 2005. Effects of silicon on H+-ATPase and H+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley (
Hordeum vulgare L.). Environmental and Experimental Botany 53(1): 29-37.
https://doi.org/10.1016/j.envexpbot.2004.02.010
Liu F., Andersen M.N., Jensen C.R. 2004. Root signal controls pod growth in drought-stressed soybean during the critical, abortion-sensitive phase of pod development. Field Crops Research 85(2): 159-166.
https://doi.org/10.1016/S0378-4290(03)00164-3
Ma J.F., Takahashi E. 2002. Soil, fertilizer, and plant silicon research in Japan. Amsterdam, Netherlands. Elsevier. 294 pp.
Maghsoudi K., Emam Y., Pessarakli M. 2016. Effect of silicon on photosynthetic gas exchange, photosynthetic pigments, cell membrane stability and relative water content of different wheat cultivars under drought stress conditions. Journal of Plant Nutrition 39(7): 1001-1015.
https://doi.org/10.1080/01904167.2015.1109108
Miao B.H., Han X.G., Zhang W.H. 2010. The ameliorative effect of silicon on soybean seedlings grown in potassium-deficient medium. Annals of Botany 105(6): 967-973.
https://doi.org/10.1093/aob/mcq063
Mieriņa I., Adere L., Krasauska K., Zoltnere E., Skrastiņa D.Z., Jure M. 2017. Antioxidant Properties of Oil and Press-Cakes. Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences 71(6): 515-521.
https://doi.org/10.1515/prolas-2017-0089
Morales D., Potlakayala S., Soliman M., Daramola J., Weeden H., Jones A., Kovak E., Lowry E., Patel P., Puthiyaparambil J., Goldman S., Rudrabhatla S. 2017. Effect of Biochemical and Physiological Response to Salt Stress in Camelina sativa. Communications in Soil Science and Plant Analysis 48(7): 716-729.
https://doi.org/10.1080/00103624.2016.1254237
Pavlista A.D., Hergert G.W., Margheim J.M., Isbell T.A. 2016. Growth of spring camelina (
Camelina sativa) under deficit irrigation in Western Nebraska. Industrial Crops and Products, 83: 118-123.
https://doi.org/10.1016/j.indcrop.2015.12.017
Romero-Aranda M.R., Jurado O., Cuartero J. 2006. Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. Journal of Plant Physiology 163(8): 847-855.
https://doi.org/10.1016/j.jplph.2005.05.010
Sakihama Y., Cohen M.F., Grace S.C., Yamasaki H. 2002. Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology 177(1): 67-80.
https://doi.org/10.1016/s0300-483x(02)00196-8
Setayesh Mehr Z., Esmaeizadeh Bahabadi S. 2013. Effect of salt stress on some phological and biochemical characteristics in
Coriandrum sativum L. Journal of Plant Production Research 20(3): 111-128.
https://dorl.net/dor/20.1001.1.23222050.1392.20.3.6.3. (In Farsi).
Shabani A., Sepaskhah A.R., Haghighi A.A. 2012. Responses of agronomic components of rapeseed (
Brassica napus L.) as influenced by deficit irrigation, water salinity and planting method. International Journal of Plant Production 7: 313-340.
https://doi.org/10.22069/ijpp.2012.989
Shahidi F. 2005. Bailey's industrial oil & fat products (6th ed.): Hoboken, N.J. : John Wiley & Sons. 520 pp.
Shi Q., Ding F., Wang X., Wei M. 2007. Exogenous nitric oxide protect cucumber roots against oxidative stress induced by salt stress. Plant Physiology and Biochemistry 45(8): 542-550.
https://doi.org/10.1016/j.plaphy.2007.05.005
Sonobe K., Hattori T., An P., Tsuji W., Eneji A. E., Kobayashi S., Kawamura Y., Tanaka K., Inanaga S. 2010. Effect of Silicon Application on Sorghum Root Responses to Water Stress. Journal of Plant Nutrition 34(1): 71-82.
https://doi.org/10.1080/01904167.2011.531360
Taiz L., Zeiger E. 2002. Plant Physiology. 3rd Edition. Sunderland, MA, USA: Sinauer Associates, Inc. Publishers.
Waraich E.A., Ahmed Z.I., Ahmad R., Ashraf M.Y., Saifullah, Naeem M., Rengel Z. 2013. 'Camelina sativa', a climate proof crop, has high nutritive value and multiple-uses: A review. Australian Journal of Crop Science 7: 1551-1559.
Zarei S., Hassibi P., Kahrizi D., Safieddin Ardebili S. M. 2021. Effect of Nitrogen Application on Camelina (
Camelina sativa) Oil Seed Yield and Yield Components at Different Planting Dates. Iranian Journal of Field Crops Research, 19(4): 311-325.
https://doi.org/10.22067/jcesc.2021.37179.0. (In Farsi).