Investigation of the Effect of Arsenic Pollution in the Soil of Some Regions of Kerman on Physiological Characteristics of Pistacia atlantica L. and Medicago sativa L.

Document Type : Original Article

Authors

1 Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran

3 Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran

Abstract

Heavy metal poisoning and its accumulation in food chains are one of modern societies' main bioenvironmental and health problems. This study was conducted to investigate the effect of arsenic contamination in soil on the physiological characteristics of pistachio and alfalfa in the form of a completely randomized design. Plant and soil sampling was done in 8 regions of the Kerman province. The results related to the pigments showed that they were influenced in both pistachio and alfalfa by the region. The highest levels of chlorophyll a, chlorophyll b, and total-chl in the alfalfa plant were related to the Shahr-e-Babak region where a similar result was seen for pistachio. chl a (alfalfa (28.50±0.37), pistachio (30.33±0.32)), Chl b ((Alfalfa: 0.13±0.23), pistachio (9.10±0.11)), total-chl (Alfalfa (8.63±0.38 (pistachio: 39.43±0.17)). The results of the regression trend of intra-tissue and peripheral arsenic changes also showed that the amount of peripheral arsenic was able to account for a higher percentage of changes in chl an in both plants and the changes model of chl due to changes in peripheral arsenic was as the second degree. But, the amount of chl b was affected by the amount of intera-tissue arsenic. The highest amount of flavonoid in pistachio was observed in Shahr-e-Babak and Bayaz regions (alfalfa (71.50±0.65), pistachio (74.50±1.32)) and the highest amount of carotenoid was obtained from Shahr-e-Babak, Bayaz, and Anar in alfalfa and pistachio. The amount of alfalfa flavonoid was more affected by intra-tissue arsenic, while in pistachio, the peripheral arsenic had more impact on flavonoids than intra-tissue arsenic. The highest amount of total carbohydrates in alfalfa and pistachios was observed from Shahr-e-Babak and Zarand regions, while the highest amount of protein was observed from Anar, Bayaz, and Kabutar-khan regions. In general, alfalfa is a more arsenic-accumulating plant, shows better resistance to it, and is less affected.

Graphical Abstract

Investigation of the Effect of Arsenic Pollution in the Soil of Some Regions of Kerman on Physiological Characteristics of Pistacia atlantica L. and Medicago sativa L.

Highlights

  • Photosynthetic pigments in alfalfa and pistachios are affected by intra-tissue arsenic.
  • Alfalfa is a better HyperChem lite plant than pistachio.
  • The amount of protein and carbohydrates in pistachio and alfalfa plant extracts is influenced by environmental arsenic.

Keywords

Main Subjects


Abid M., Mansour E., Yahia L. B., Bachar K., Ben Khaled A., Ferchichi A. 2016. Alfalfa nutritive quality as influenced by drought in South-Eastern Oasis of Tunisia. Ital. J. Anim. Sci 15(2): 334-342. https://doi.org/10.1080/1828051x.2016.1175916
Alavi M., Rai M., Martinez F., Kahrizi D., Khan H., Rose Alencar de Menezes I., Douglas Melo Coutinho H., Costa J. G. M. 2022. The efficiency of metal, metal oxide, and metalloid nanoparticles against cancer cells and bacterial pathogens: different mechanisms of action. Cell. Mol. Biomed. Rep 2(1): 10-21. 10.55705/cmbr.2022.147090.1023
Amini F., Amirjani M. R. 2012. Effect of nickel and lead treatment on chlorophyll content and accumulation of these metals in alfalfa (Medicago sativa). Journal of Production and Processing of Crops and Horticulture 2: 11-19.
Babaakbari-Sari M., Farahbakhsh M., Savaghebi G. R., Najafi N. 2013. Investigation of Arsenic Concentration in Some of the Calcareous Soils of Ghorveh and Arsenic Uptake by Maize, Wheat and Rapeseed in a Natural Contaminated Soil. Water and Soil Science 23(4): 116.
Bafeel S. 2010. Physiological and biochemical aspects of tolerance in Lepidium sativum (cress) to lead toxicity. Catrina Int J Environ Sci 5(1): 1-7.
Basa B., Lattanzio G., Solti Á., Tóth B., Abadía J., Fodor F., Sárvári É. 2014. Changes induced by cadmium stress and iron deficiency in the composition and organization of thylakoid complexes in sugar beet (Beta vulgaris L.). Environ. Exp. Bot 101: 1-11. https://doi.org/10.1016/j.envexpbot.2013.12.026
Bhardwaj P., Chaturvedi A. K., Prasad P. 2009. Effect of enhanced lead and cadmium in soil on physiological and biochemical attributes of Phaseolus vulgaris L. Nat. sci 7(8): 63-75.
Bharwana S., Ali S., Farooq M., Iqbal N., Abbas F., Ahmad M. 2013. Alleviation of lead toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes suppressed lead uptake and oxidative stress in cotton. J. Bioremed. Biodeg 4(4): 10.4172. http://dx.doi.org/10.4172/2155-6199.1000187
Bizzo A. L. T., Intorne A. C., Gomes P. H., Suzuki M. S., Esteves B. d. S. 2014. Short-term physiological responses to copper stress in Salvinia auriculata Aubl. Acta Limnol 26: 268-277. https://doi.org/10.1590/S2179-975X2014000300006
Boddu V. M., Abburi K., Talbott J. L., Smith E. D., Haasch R. 2008. Removal of arsenic (III) and arsenic (V) from aqueous medium using chitosan-coated biosorbent. Water Res 42(3): 633-642. https://doi.org/10.1016/j.watres.2007.08.014
Bradford M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem 72(1-2): 248-254.
Chang C.-C., Yang M.-H., Wen H.-M., Chern J.-C. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food. Drug. Anal 10(3): 178-182.
Costa G., Spitz E. 1997. Influence of cadmium on soluble carbohydrates, free amino acids, protein content of in vitro cultured Lupinus albus. Plant Sci 128(2): 131-140. https://doi.org/10.1016/S0168-9452(97)00148-9
El-Mahrouk E.-S. M., Eisa E. A.-H., Hegazi M. A., Abdel-Gayed M. E.-S., Dewir Y. H., El-Mahrouk M. E., Naidoo Y. 2019. Phytoremediation of cadmium-, copper-, and lead-contaminated soil by Salix mucronata (Synonym Salix safsaf). HortScience 54(7): 1249-1257. https://doi.org/10.21273/HORTSCI14018-19
Elfanssi S., Ouazzani N., Mandi L. 2018. Soil properties and agrophysiological responses of alfalfa (Medicago sativa L.) irrigated by treated domestic wastewater. Agric. Water Manag 202: 231-240. https://doi.org/10.1016/j.agwat.2018.02.003
Fatima A., Farid M., Farid S., Ishaq H. K., Iftikhar U., Rizwan M., Zubair M., Ali S. 2021. Heavy Metals Induced Physiological and Biochemical Changes in Fenugreek (Trigonella foenum-graceum L.). In Hasanuzzaman M (Ed.), Approaches to the Remediation of Inorganic Pollutants (pp. 239-258). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-15-6221-1_12
Fodor F., Gáspár L., Morales F., Gogorcena Y., Lucena J. J., Cseh E., Kröpfl K., Abadía J., Sárvári É. 2005. Effects of two iron sources on iron and cadmium allocation in poplar (Populus alba) plants exposed to cadmium. Tree Physiol 25(9): 1173-1180. https://doi.org/10.1093/treephys/25.9.1173
Ghodke P., Andhale P., Gijare U., Thangasamy A., Khade Y., Mahajan V., Singh M. 2018. Physiological and biochemical responses in onion crop to drought stress. Int J Curr Microbiol App Sci 7(1): 2054-2062. https://doi.org/10.20546/ijcmas.2018.701.247
Gill S. S., Khan N. A., Tuteja N. 2012. Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Sci 182: 112-120. https://doi.org/10.1016/j.plantsci.2011.04.018
Gupta D. K., Tiwari S., Razafindrabe B. H. N., Chatterjee S. 2017. Arsenic Contamination from Historical Aspects to the Present. In Gupta D K, Chatterjee S (Eds.), Arsenic Contamination in the Environment: The Issues and Solutions (pp. 1-12). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-54356-7_1
Hamidi H., Masoudian N., Ebadi M., Roudi B. 2020. Relationship of Sodium Nitroprusside with Growth and Antioxidant Enzymes of Canola under Lead Stress. J. Chem. Health Risks 10(1): 57-65. https://dx.doi.org/10.22034/jchr.2020.1863574.1020
Heckathorn S. A., Mueller J. K., LaGuidice S., Zhu B., Barrett T., Blair B., Dong Y. 2004. Chloroplast small heat-shock proteins protect photosynthesis during heavy metal stress. Am. J. Bot 91(9): 1312-1318. https://doi.org/10.3732/ajb.91.9.1312
Hussain A., Abbas N., Arshad F., Akram M., Khan Z. I., Ahmad K., Mansha M., Mirzaei F. 2013. Effects of diverse doses of Lead (Pb) on different growth attributes of Zea-Mays L. Agricultural Sci 4(5): Article ID:32311. http://www.scirp.org/journal/PaperInformation.aspx?PaperID=32311
Irigoyen J., Einerich D., Sánchez‐Díaz M. 1992. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativd) plants. Physiol. Plant 84(1): 55-60. https://doiorg/101111/j1399-30541992tb08764x
Jing D., Fei-bo W., Guo-ping Z. 2005. Effect of cadmium on growth and photosynthesis of tomato seedlings. J. Zhejiang Univ. Sci. B 6(10): 974-980. https;//doi.org/10.1007/bf02888488
Jithesh M., Prashanth S., Sivaprakash K., Parida A. K. 2006. Antioxidative response mechanisms in halophytes: their role in stress defense. J. Genet 85(3): 237-254. https://doi.org/10.1007/BF02935340
Karcı H., Paizila A., Güney M., Zhaanbaev M., Kafkas S. 2022. Revealing genetic diversity and population structure in Pistachio (Pistacia vera L.) by SSR markers. Genet. Resour. Crop Evol 1-15. https://doi.org/10.1007/s10722-022-01410-w
Khan M. U., Shahbaz N., Waheed S., Mahmood A., Shinwari Z. K., Malik R. N. 2016. Comparative health risk surveillance of heavy metals via dietary foodstuff consumption in different land-use types of Pakistan. Hum Ecol Risk Assess 22(1): 168-186. https://doi.org/10.1080/10807039.2015.1056294
Khudsar T., Mahmooduzzafar, Iqbal M. 2001. Cadmium-Induced Changes in Leaf Epidermes, Photosynthetic Rate and Pigment Concentrations in Cajanus Cajan. Biol. Plant 44(1): 59-64. https://doi.org/10.1023/A:1017918320697
Kohli S. K., Khanna K., Bhardwaj R., Abd_Allah E. F., Ahmad P., Corpas F. J. 2019. Assessment of Subcellular ROS and NO Metabolism in Higher Plants: Multifunctional Signaling Molecules. Antioxidants 8(12): 641. https://doi.org/10.3390/antiox8120641
Kovács Z., Soós Á., Kovács B., Kaszás L., Elhawat N., Bákonyi N., Razem M., Fári M. G., Prokisch J., Domokos-Szabolcsy É., Alshaal T. 2021. Uptake Dynamics of Ionic and Elemental Selenium Forms and Their Metabolism in Multiple-Harvested Alfalfa (Medicago sativa L.). Plants 10 (7): 1277. https://doi.org/10.3390/plants10071277
Lichtenthaler H. K. 1987. [34] Chlorophylls and carotenoids: pigments of photosynthetic biomembranes Methods in enzymology (Vol. 148, pp. 350-382): Elsevier. https://doi.org/10.1016/0076-6879(87)48036-1
Liu C.-W., Chen Y.-Y., Kao Y.-H., Maji S.-K. 2014. Bioaccumulation and translocation of arsenic in the ecosystem of the Guandu Wetland, Taiwan. Wetlands 34(1): 129-140. https://doi.org/10.1007/s13157-013-0491-0
López-Millán A.-F., Sagardoy R., Solanas M., Abadía A., Abadía J. 2009. Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environ. Exp. Bot 65(2-3): 376-385. https://doi.org/10.1016/j.envexpbot.2008.11.010
Maghsoudi K., Arvin M. J., Ashraf M. 2020. Mitigation of Arsenic Toxicity in Wheat by the Exogenously Applied Salicylic Acid, 24-Epi-Brassinolide and Silicon. J. Soil Sci. Plant Nutr 20(2): 577-588. https://doi.org/10.1007/s42729-019-00147-3
Mahmood S., Malik S. A., Tabassum A., Younis U., Athar M. 2014. Biometric and biochemical attributes of alfalfa seedlings as indicators of stress induced by excessive cadmium. J. Soil Sci. Plant Nutr 14(3): 546-553. https://doi.org/10.1016/j.chemosphere.2018.12.101
Malakhov D., Islamgulova A. 2021. The Ecological Niche of Pistacia Vera L. (Anacardiaceae) in Central Asia: A Comprehensive Tool for Agromeliorative Planning. Biosis: Biological Systems 2(1): 209-216. https://doi.org/10.37819/biosis.002.01.0089
Mitra A., Chatterjee S., Moogouei R., Gupta D. K. 2017. Arsenic accumulation in rice and probable mitigation approaches: a review. Agronomy 7(4): 67. https://doi.org/10.3390/agronomy7040067
Nooranizadeh H., Kafilzadeh F. 2011. The effect of cadmium toxicity on growth, soluble sugars, photosynthetic pigments and some of enzymes in safflower (Carthamus tinctorius L.). Iranian Journal of Biology 24(6): 850-868.
Palma J. M., Sandalio L. M., Corpas F. J., Romero-Puertas M. C., McCarthy I., Luis A. 2002. Plant proteases, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiol. biochem 40(6-8): 521-530. https://doi.org/10.1016/S0981-9428(02)01404-3
Pigna M., Cozzolino V., Caporale A. G., Mora M. L., Meo V. D., Jara A. A., Violante A. 2010. Effect of phosphurs fertilization on arsenic uptake by while grown in polluted soils. J. Soil Sci. Plant Nutr 10(4): 428-442. http://dx.doi.org/10.4067/S0718-95162010000200004  
Pinho S., Ladeiro B. 2012. Phytotoxicity by Lead as Heavy Metal Focus on Oxidative Stress. J. Bot., 2012: Article ID: 369572. https://doi.org/10.1155/2012/369572
Pinto Vilar R., Ikuma K. 2022. Effects of Soil Surface Chemistry on Adsorption and Activity of Urease from a Crude Protein Extract: Implications for Biocementation Applications. Catalysts 12(2): 230. https://doi.org/10.3390/catal12020230
Pourrut B., Shahid M., Dumat C., Winterton P., Pinelli E. 2011. Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol 213: 113-136. https://doi.org/10.1007/978-1-4419-9860-6_4
Prasad S.M., Dwivedi R., Zeeshan M., Singh R. 2004. UV-B and cadmium induced changes in pigments, photosynthetic electron transport activity, antioxidant levels and antioxidative enzyme activities of Riccia sp. Acta Physiologiae Plantarum 26(4): 423-430. https://doi.org/10.1007/s11738-004-0033-8
Raeesi Sadati S. Y., Jahanbakhsh Godekahriz S., Sedghi M. 2016. The effect of cadmium and mercuric chlorides on some physiological traits in two cultivars of wheat. Iran. J. Plant Physiol 6(3): 1761-1770. https://doi.org/10.30495/ijpp.2016.532692
Rahman M. A., Hassler C. 2014. Is arsenic biotransformation a detoxification mechanism for microorganisms? Aquat.Toxicol 146: 212-219. https://doi.org/10.1016/j.aquatox.2013.11.009
Ramos I., Esteban E., Lucena J. J., Gárate A. n. 2002. Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd–Mn interaction. Plant Sci 162(5): 761-767. https://doi.org/10.1016/S0168-9452(02)00017-1
Rasouli H., Popović-Djordjević J., Sayyed R. Z., Zarayneh S., Jafari M., Fazeli-Nasab B. 2020. Nanoparticles: A New Threat to Crop Plants and Soil Rhizobia? In Hayat S Pichtel J Faizan M, Fariduddin Q (Eds.), Sustainable Agriculture Reviews 41: Nanotechnology for Plant Growth and Development (pp. 201-214). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-33996-8_11
Rastgoo L., Alemzadeh A., Tale A. M., Tazangi S. E., Eslamzadeh T. 2014. Effects of copper, nickel and zinc on biochemical parameters and metal accumulation in gouan, “Aeluropus littoralis”. [Other Journal Article]. Plant Knowledge J 3(1): 42-49.
Reddy A. M., Kumar S. G., Jyothsnakumari G., S.Thimmanaik, ChintaSudhakar. 2005a. Lead induced changes in antioxidant metabolism of horse gram (Macrotyloma uniflorum (Lam.) Verdc.) and Bengal gram (Cicer arietinum L.). 60(1): 97-104. https://doi.org/10.1016/j.chemosphere.2004.11.092
Reddy V., Urooj A., Kumar A. 2005b. Evaluation of antioxidant activity of some plant extracts and their application in biscuits. Food chem., 90(1-2): 317-321. https://doi.org/10.1016/j.foodchem.2004.05.038
Rizwan M., Ali S., Qayyum M. F., Ibrahim M., Zia-ur-Rehman M., Abbas T., Ok Y. S. 2016. Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environ. Sci. Pollut. Res 23(3): 2230-2248. https://doi.org/10.1007/s11356-015-56977
Romero-Puertas M., Palma J., Gómez M., Del Rio L., Sandalio L. 2002. Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ 25(5): 677-686. https://doi.org/10.1046/j.1365-3040.2002.00850.x
Sakihama Y., Yamasaki H. 2002. Lipid Peroxidation Induced by Phenolics in Conjunction with Aluminum Ions. Biol. Plant 45(2): 249-254. https://doi.org/10.1023/A:1015152908241
Schutz H., Fangmier E. 2001. Growth and yield responses of spring Wheat (Triticum aestivum L.) to elevated CO2 and water limitation. Environ. Pollut 14(2): 187-194. https://doi.org/10.1016/S0269-7491(00)00215-3
Shaban H., Fazeli-Nasab B., Alahyari H., Alizadeh G., Shahpesandi S. 2015. An Overview of the Benefits of Compost tea on Plant and Soil Structure. Advances in Bioresearch 6(61): 154-158. https://doi.org/10.15515/abr.0976-4585.6.1.154158
Shaibur M. R., Kitajima N., Huq S. I., Kawai S. 2009. Arsenic–iron interaction: Effect of additional iron on arsenic-induced chlorosis in barley grown in water culture. J. Soil Sci. Plant Nutr 55(6): 739-746. https://doi.org/10.1111/j.1747-0765.2009.00414.x
Singh H., Singh A., Hussain I., Yadav V. 2017. Oxidative stress induced by lead in Vigna radiata L. seedling attenuated by exogenous nitric oxide. Trop Plant Res 4(2): 225-234. https://doi.org/10.22271/tpr.2017.v4.i2.031
Stiborová M., Ditrichová M., BŘEzinová A. 1987. Effect of heavy metal ions on growth and biochemical characteristics of photosynthesis of barley and maize seedlings. Biol. Plant 29(6): 453-467. https://doi.org/10.1007/BF02882221
Tegelberg R., Julkunen‐Tiitto R., Aphalo P. 2004. Red: far-red light ratio and UV-B radiation: their effects on leaf phenolics and growth of silver birch seedlings. Plant Cell Environ 27(8): 1005-1013. https://doi.org/10.1111/j.1365-3040.2004.01205.x
Valko M., Jomova K., Rhodes C. J., Kuča K., Musílek K. 2016. Redox-and non-redox-metal-induced formation of free radicals and their role in human disease. Arch. Toxicol 90(1): 1-37. https://doi.org/10.1007/s00204-015-1579-5
Viehweger K. 2014. How plants cope with heavy metals. Bot Stud 55(1): 35. https://doi.org/10.1186/1999-3110-55-35
Woodson W. R., Lawton K. A. 1988. Ethylene-induced gene expression in carnation petals: relationship to autocatalytic ethylene production and senescence. Plant Physiol 87(2): 498-503. https://doi.org/10.1104/pp.87.2.498