Fumigation Toxicity of the Essential Oils of Ferula persica against Tribolium castaneum and Ephestia kuehniella

Document Type : Original Article

Authors

1 Department of Plant Production and Genetics, Razi University, Kermanshah, Iran

2 Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran

3 Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

Abstract

For the first time, the potential fumigation toxicity of the essential oils (EOs) extracted from the flower and root tissues of Ferula persica were evaluated against the adult insects of Tribolium castaneum and the fourth instar larvae of Ephestia kuehniella. The EOs from the flower and root tissues of F. persica were initially prepared using the water distillation method and subsequently utilized for fumigation toxicity assays. To this end, four different series of EO concentrations (each one contained a group of six different concentrations) belonging to both tissues were applied for T. castaneum and E. kuehniella. The experiment was based on a completely randomized design with three replicates, and the mortality rate after 24 hours was employed as a dependent criterion. According to the four individual ANOVA results, in all cases, EO concentration substantially affected the mortality rate of both storage pests of interest. Furthermore, the median lethal concentrations (LC50) of EOs from the flower and root of F. persica against T. castaneum were calculated as 220.832 and 371.475 μL L−1 air, respectively. However, higher LC50 values of 860.041 μL L−1 air and 1268.148 μL L−1 air were respectively detected upon exposure of the fourth instar larvae of E. kuehniella versus EOs from flower and root tissues. Considering LC50 values of the current fumigant assay, it seems that the insecticidal activity of EOs from both flower and root tissues of the plant is less toxic against E. kuehniella rather than T. castaneum. Altogether, the results revealed that these EOs could be possibly nominated as safe botanical pesticides for biocontrol of storage pests, including E. kuehniella and particularly T. castaneum

Graphical Abstract

Fumigation Toxicity of the Essential Oils of Ferula persica against Tribolium castaneum and Ephestia kuehniella

Highlights

  • The fumigation toxicity of essential oils from Ferula persica was studied.
  • Both storage pests of Tribolium castaneum and Ephestia kuehniella were utilized.
  • EO concentrations were positively correlated with mortality rates.
  • The fumigation toxicity of flower EO was superior to the root one.
  • EOs of F. persica were more toxic against T. castaneum than E. kuehniella.

Keywords

Main Subjects


Abbott W. S. 1925. A method of computing the effectiveness of an insecticide. J. econ. Entomol 18(2): 265-267. https://doi.org/10.1093/jee/18.2.265a
Abou-Taleb H. K., Mohamed M. I., Shawir M. S., Abdelgaleil S.A. 2016. Insecticidal properties of essential oils against Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase and adenosine triphosphatases. Natural Product Research 30(6): 710-714. https://doi.org/10.1080/14786419.2015.1038999
Abouelatta A.M., Keratum A.Y., Ahmed S.I., El-Zun H.M. 2020. Repellent, contact and fumigant activities of geranium (Pelargonium graveolens L.’Hér) essential oils against Tribolium castaneum (Herbst) and Rhyzopertha dominica (F.). International Journal of Tropical Insect Science 40(4): 1021-1030. https://doi.org/10.1007/s42690-020-00161-4
Aouadi G., Haouel S., Soltani A., Ben Abada M., Boushih E., Elkahoui S., Taibi F., Mediouni Ben Jemâa J., Bennadja S. 2020. Screening for insecticidal efficacy of two Algerian essential oils with special concern to their impact on biological parameters of Ephestia kuehniella (Zeller)(Lepidoptera: Pyralidae). Journal of Plant Diseases and Protection 127(4): 471-482. https://doi.org/10.1007/s41348-020-00340-y
Asili J., Sahebkar A., Fazly Bazzaz B. S., Sharifi S., Iranshahi M. 2009. Identification of Essential Oil Components of Ferula badrakema Fruits by GC-MS and 13 C-NMR Methods and Evaluation of its Antimicrobial Activity. Journal of Essential Oil Bearing Plants 12: 7-15. https://doi.org/10.1080/0972060X.2009.10643685
Baccari W., Znati M., Zardi-Bergaoui A., Chaieb I., Flamini G., Ascrizzi R., Jannet H. B. 2020. Composition and insecticide potential against Tribolium castaneum of the fractionated essential oil from the flowers of the Tunisian endemic plant Ferula tunetana Pomel ex Batt. Industrial crops and products 143: 111888. https://doi.org/10.1016/j.indcrop.2019.111888
Bouzeraa H., Bessila-Bouzeraa M., Labed N. 2019. Repellent and fumigant toxic potential of three essential oils against Ephestia kuehniella. Biosystems Diversity 27(4): 349-353. https://doi.org/10.15421/011946
Campbell J. F., Athanassiou C. G., Hagstrum D. W., Zhu K. Y. 2022. Tribolium castaneum: A model insect for fundamental and applied research. Annual Review of Entomology 67: 347-365. https://doi.org/10.1146/annurev-ento-080921-075157
Campos E. V., Proença P. L., Oliveira J. L., Bakshi M., Abhilash P., Fraceto L. F. 2019. Use of botanical insecticides for sustainable agriculture: Future perspectives. Ecological Indicators 105: 483-495. https://doi.org/10.1016/j.ecolind.2018.04.038
Chaaban S. B., Hamdi S. H., Mahjoubi K., Jemâa J. M. B. 2019. Composition and insecticidal activity of essential oil from Ruta graveolens, Mentha pulegium and Ocimum basilicum against Ectomyelois ceratoniae Zeller and Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Journal of Plant Diseases and Protection 126(3): 237-246. https://doi.org/10.1007/s41348-019-00218-8
Copping L. G., Menn J. J. 2000. Biopesticides: a review of their action, applications and efficacy. Pest Management Science: Formerly Pesticide Science 56(8): 651-676. https://doi.org/10.1002/1526-4998(200008)56:8<651::AID-PS201>3.0.CO;2-U
Choi W.I., Lee S.G., Park H.M., Ahn Y.J. 2004. Toxicity of plant essential oils to Tetranychus urticae (Acari: Tetranychidae) and Phytoseiulus persimilis (Acari: Phytoseiidae). Journal of Economic Entomology 97(2): 553-558. https://doi.org/10.1093/jee/97.2.553
Fatemikia S., Abbasipour H., Saeedizadeh A. 2017. Phytochemical and acaricidal study of the Galbanum, Ferula gumosa Boiss.(Apiaceae) essential oil against Tetranychus urticae Koch (Tetranychidae). Journal of Essential Oil Bearing Plants 20(1): 185-195. https://doi.org/10.1080/0972060X.2016.1257957
Ghasemi V., Yazdi A. K., Tavallaie F. Z., Sendi J. J. 2014. Effect of essential oils from Callistemon viminalis and Ferula gummosa on toxicity and on the hemocyte profile of Ephestia kuehniella (Lep.: Pyralidae). Archives of Phytopathology and Plant Protection 47(3): 268-278. https://doi.org/10.1080/03235408.2013.808856
Glare T., Caradus J., Gelernter W., Jackson T., Keyhani N., Köhl J., Marrone P., Morin L., Stewart A. 2012. Have biopesticides come of age? Trends in biotechnology 30(5): 250-258. https://doi.org/10.1016/j.tibtech.2012.01.003
Hill D. S. 2002. Pests of stored foodstuffs and their control: Springer Science & Business Media.
Iranshahi M., Amin G., Sourmaghi M. S., Shafiee A., Hadjiakhoondi A. 2006. Sulphur‐containing compounds in the essential oil of the root of Ferula persica Willd. var. persica. Flavour and fragrance journal 21(2): 260-261. https://doi.org/10.1002/ffj.1574
Javanshir M., Karimzadeh R., Hejazi M. J., Shayestehmehr H. 2022. Individual and combined effects of contact insecticides and high temperatures on Mediterranean flour moth, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Journal of the Science of Food and Agriculture 102(5): 2165-2171. https://doi.org/10.1002/jsfa.11558
Javidnia K., Miri R., Kamalinejad M., Edraki N. 2005. Chemical composition of Ferula persica Wild. essential oil from Iran. Flavour and fragrance journal 20(6): 605-606. https://doi.org/10.1002/ffj.1496
Koorki Z., Shahidi-Noghabi S., Smagghe G., Mahdian K. 2022. Insecticidal activity of the essential oils from yarrow (Achillea wilhelmsii L.) and sweet asafetida (Ferula assa-foetida L.) against Aphis gossypii Glover.(Hemiptera: Aphididae) under controlled laboratory conditions. International Journal of Tropical Insect Science 1-7. https://doi.org/10.1007/s42690-022-00766-x
Khattree R., Naik D. N. 2000. Multivariate data reduction and discrimination with SAS software: Sas Institute.  Koorki Z., Shahidi-Noghabi S., Smagghe G., Mahdian K. 2022. Insecticidal activity of the essential oils from yarrow (Achillea wilhelmsii L.) and sweet asafetida (Ferula assa-foetida L.) against Aphis gossypii Glover.(Hemiptera: Aphididae) under controlled laboratory conditions. International Journal of Tropical Insect Science: 1-7. 10.52547/jmp.20.77.79
Kumar J., Ramlal A., Mallick D., Mishra V. 2021. An overview of some biopesticides and their importance in plant protection for commercial acceptance. Plants 10(6): 1185. https://doi.org/10.3390/plants10061185
Kurtuluş A., Pehlivan S., Achiri T. D., Atakan E. 2020. Influence of different diets on some biological parameters of the Mediterranean flour moth, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Journal of Stored Products Research 85: 101554. https://doi.org/10.1016/j.jspr.2019.101554
LeOra Software. 1994. POLO-PC: A user’s guide to probit or logit analysis. Leora Software, 1119
Mabberley D. J. 2017. Mabberley's Plant-book: A Portable Dictionary of Plants, their Classification and Uses (4 ed.). Cambridge: Cambridge University Press. https://doi.org/10.1017/9781316335581
Mnif I., Ghribi D. 2015. Potential of bacterial derived biopesticides in pest management. Crop Protection 77: 52-64. https://doi.org/10.1016/j.cropro.2015.07.017
Mossa A.-T. H. 2016. Green pesticides: Essential oils as biopesticides in insect-pest management. Journal of environmental science and technology 9(5): 354. https://doi.org/10.3923/jest.2016.354.378
Oviedo-Sarmiento J. S., Cortes J. J. B., Ávila W. A. D., Suárez L. E. C., Daza E. H., Patiño-Ladino O. J., Prieto-Rodríguez J. A. 2021. Fumigant toxicity and biochemical effects of selected essential oils toward the red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae). Pesticide Biochemistry and Physiology 179: 104941. https://doi.org/10.1016/j.pestbp.2021.104941
Özder N. 2004. Effect of different cold storage periods on parasitization performance of Trichogramma cacoeciae (Hymenoptera, Trichogrammatidae) on eggs of Ephestia kuehniella (Lepidoptera, Pyralidae). Biocontrol Science and Technology 14(5): 441-447. https://doi.org/10.1080/09583150410001683529
Papanikolaou N. E., Kavallieratos N. G., Iliopoulos V., Evergetis E., Skourti A., Nika E. P., Haroutounian S. A. 2022. Essential oil coating: mediterranean culinary plants as grain protectants against larvae and adults of Tribolium castaneum and Trogoderma granarium. Insects 13(2): 165. https://doi.org/10.3390/insects13020165
Pavela R., Benelli G. 2016. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends in plant science 21(12): 1000-1007. https://doi.org/10.1016/j.tplants.2016.10.005
Pavela R., Morshedloo M. R., Lupidi G., Carolla G., Barboni L., Quassinti L., Bramucci M., Vitali L. A., Petrelli D., Kavallieratos N. G. 2020. The volatile oils from the oleo-gum-resins of Ferula assa-foetida and Ferula gummosa: a comprehensive investigation of their insecticidal activity and eco-toxicological effects. Food and Chemical Toxicology 140: 111312. https://doi.org/10.1016/j.fct.2020.111312
Rani L., Thapa K., Kanojia N., Sharma N., Singh S., Grewal A. S., Srivastav A. L., Kaushal J. 2021. An extensive review on the consequences of chemical pesticides on human health and environment. Journal of Cleaner Production 283: 124657. https://doi.org/10.1016/j.jclepro.2020.124657
Salehi M., Naghavi M. R., Bahmankar M. 2019. A review of Ferula species: Biochemical characteristics, pharmaceutical and industrial applications, and suggestions for biotechnologists. Industrial Crops and Products 139: 111511. https://doi.org/10.1016/j.indcrop.2019.111511
Singh P., Pandey A. K. 2018. Prospective of essential oils of the genus Mentha as biopesticides: A review. Frontiers in plant science 9: 1295. https://doi.org/10.3389/fpls.2018.01295
Sokuti Y., Ghasemi V. 2018. Acute and chronic toxicity of Ziziphora clinopodioides and Ferula gummosa essential oils against Plodia interpunctella (Lepidoptera: Pyralidae). Journal of Entomological Society of Iran 38(2): 187-203. https://doi.org/10.1016/j.fitote.2017.10.012
Soltani S., Amin G. R., Salehi-Sourmaghi, M. H., Schneider B., Lorenz S., Iranshahi M. 2018. Sulfur-containing compounds from the roots of Ferula latisecta and their cytotoxic activities. Fitoterapia 124, 108-112. https://doi.org/10.1016/j.fitote.2017.10.012
Tarlack P., Mehrkhou F., Mousavi M. 2015. Life history and fecundity rate of Ephestia kuehniella (Lepidoptera: Pyralidae) on different wheat flour varieties. Archives of Phytopathology and Plant Protection 48(1): 95-103. https://doi.org/10.1080/03235408.2014.882135
Upadhyay N., Dwivedy A. K., Kumar M., Prakash B., Dubey N. K. 2018. Essential oils as eco-friendly alternatives to synthetic pesticides for the control of Tribolium castaneum (Herbst)(Coleoptera: Tenebrionidae). Journal of Essential Oil Bearing Plants 21(2): 282-297. https://doi.org/10.1080/0972060X.2018.1459875
Wu X.-f., Chen M.-n., Wang Y.-j., Yu S.-q., Xia Y.-l., Dong C.-z., Hou Z.-m., Cao Y. 2021. Chemical Composition and Fumigant Activities of Essential Oils from Piper hancei Maxim against Tribolium castaneum (Herbst). Journal of Essential Oil Bearing Plants 24(1): 86-93. https://doi.org/10.1080/0972060X.2021.1886997
Zomorodian K., Saharkhiz J., Pakshir K., Immeripour Z., Sadatsharifi A. 2018. The composition, antibiofilm and antimicrobial activities of essential oil of Ferula assa-foetida oleo-gum-resin. Biocatalysis and Agricultural Biotechnology 14: 300-304. https://doi.org/10.1016/j.bcab.2018.03.014