AOAC. 2000. Official methods of analysis, 15th Edition. Association of Official Analytical Chemists, Washington, DC, USA.
Ciccoli R., Sperandei M., Petrazzuolo F., Broglia M., Chiarini L., Correnti A., Tabacchioni S. 2018. Anaerobic digestion of the above ground biomass of Jerusalem Artichoke in a pilot plant: Impact of the preservation method on the biogas yield and microbial community. Biomass and Bioenergy 108: 190-197.
https://doi.org/10.1016/j.biombioe.2017.11.003
Diederichsen A. 2010. Phenotypic diversity of Jerusalem artichoke (
Helianthus tuberosus L.) germplasm preserved by the Canadian gene bank. Hellia 33 (53): 1-16.
https://doi.org/10.2298/HEL1053001D
Dubois M., Gilles K.A., Hamilton J.K., Rebers P.T., Smith F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28 (3): 350-356.
https://doi.org/10.1021/ac60111a017
Gao K., Zhang Z., Zhu T., Tian X., Gao Y., Zhao L., Li T. 2019. The influence of leaf removal on tuber yield and fuel characteristics of
Helianthus tuberosus L. in a semi-arid area. Industrial Crops and Products 131: 8-13.
https://doi.org/10.1016/j.indcrop.2019.01.024
Gao K., Zhang Z., Zhu T., Coulter, J.A. 2020. The influence of flower removal on tuber yield and biomass characteristics of
Helianthus tuberosus L. in a semi-arid area. Industrial Crops and Products 150:112374-112380.
https://doi.org/10.1016/j.indcrop.2020.112374
Gunnarsson I.B., Svensson S.E., Johansson E., Karakashev D., Angelidaki I. 2014. Potential of Jerusalem artichoke (
Helianthus tuberosus L.) as a biorefinery crop. Industrial Crops and Products 56: 231-240.
https://doi.org/10.1016/j.indcrop.2014.03.010
Hay R.K.M., Offer N.W. 1992.
Helianthus tuberosus as an alternative forage crop for cool maritime regions: a preliminary study of the yield and nutritional quality of shoot tissues from perennial stands. Science of Food and Agriculture 60 (2): 213-221.
https://doi.org/10.1002/jsfa.2740600209
Kou Y.X., Zeng J., Liu J.Q., Zhao C.M. 2014. Germplasm diversity and differentiation of
Helianthus tuberosus L. revealed by AFLP marker and phenotypic traits. The Journal of Agricultural Science 152 (5): 779-789.
https://doi.org/10.1017/S0021859613000476
Krober W., Heklau H., Bruelheide H. 2015. Leaf morphology of 40 evergreen and deciduous broad leaved subtropical tree species and relationships to functional ecophysiological traits. Plant Biology. 17: 373–383.
https://doi.org/10.1111/plb.12250
Li L., Shao T., Yang H., Chen M., Gao X., Long X., Rengel Z. 2017. The endogenous plant hormones and ratios regulate sugar and dry matter accumulation in Jerusalem artichoke in salt-soil. Science of the Total Environment 578: 40-46.
https://doi.org/10.1016/j.scitotenv.2016.06.075
Long X.H., Shao H.B., Liu L., Liu L.P., Liu Z.P. 2016. Jerusalem artichoke: A sustainable biomass feedstock for biorefinery. Renewable and Sustainable Energy Reviews 54: 1382-1388.
https://doi.org/10.1016/j.rser.2015.10.063
Malmberg A., Theander O. 1986. Differences in chemical composition of leaves and stem in Jerusalem artichoke and changes in low-molecular sugar and fructan content with time of harvest. Swedish Journal of Agricultural Research 16 (1): 7-12.
Mclaurin W.J., Somda Z.C., Kays S.J. 1999. Jerusalem artichoke growth, development, and field storage.I. Numerical assessment of plant part development and dry matter acquisition and allocation. Journal of Plant Nutrition 22 (8):1303-1313.
https://doi.org/10.1080/01904169909365714.
Panchev I., Delchev N., Kovacheva D., Slavov A. 2011. Physicochemical characteristics of inulins obtained from Jerusalem artichoke (
Helianthus tuberosus L.). European Food Research and Technology 233 (5): 889-896.
https://doi.org/10.1007/s00217-011-1584-8
Papi N., Kafilzadeh F., Fazael, H. 2017. Effects of incremental substitution of maize silage with Jerusalem artichoke silage on performance of fat-tailed lambs. Small Ruminant Research 147: 56-62.
https://doi.org/10.1016/j.smallrumres.2016.11.013
Rossini F., Provenzano M.E., Kuzmanović L., Ruggeri R. 2019. Jerusalem artichoke (
Helianthus tuberosus L
.): a versatile and sustainable crop for renewable energy production in Europe. Agronomy 9(9): 528-568.
https://doi.org/10.3390/agronomy9090528
Slimestad R., Seljaasen R., Meijer K., Skar S.L. 2010. Norwegian-grown Jerusalem artichoke (
Helianthus tuberosus L
.): morphology and content of sugars and fructo-oligosaccharides in stems and tubers. Science Food Agriculture 90(6): 956-964.
https://doi.org/10.1002/jsfa.3903
Stauffer M.D., Chubey B.B., Dorrell D.G. 1980. Growth, yield and compositional characteristics of Jerusalem artichoke as it relates to biomass production. Am. Chem. Soc., Div. Fuel Chem., Prepr; (United States), 25 (CONF-800814-P3).
Swanton C.J., Clements D.R., Moore M.J., Cavers P.B. 1992. The biology of Canadian weeds. 101.
Helianthus tuberosus L
. Canadian Journal of Plant Science 72 (4): 1367-1382.
https://doi.org/10.4141/cjps92-169
Wang Y., Zhao Y., Xue F., Nan X., Wang H., Hua D., Liu J., Yang L., Jiang L., Xiong B. 2020. Nutritional value, bioactivity, and application potential of Jerusalem artichoke (
Helianthus tuberosus L.) as a neotype feed resource. Animal Nutrition 6 (4): 429-437.
https://doi.org/10.1016/j.aninu.2020.09.001