Effect of Seed Color and Size on Cardinal Temperatures of Castor Bean (Ricinus Communis L.) Seed Germination

Document Type : Original Article

Authors

1 Department of Plant Production and Genetics, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Iran

2 Department of Agronomy, Faculty of Agriculture, University of Mohaghegh Ardabili, Ardabil, Iran

Abstract

Many studies have focused on the cardinal temperatures and thermal time requirements of seed germination, but how seed size and color affect germination rate and thermal thresholds is poorly understood. In this study, nonlinear regression models were used to examine the relationships among seed size, seed color, and germination rate, and assess the extent to which these seed traits influence cardinal temperature and thermal time requirements for seed germination. The beta-modified model was found to be the best model for predicting the required time to reach 50% germination. Based on the model output, the base, optimum, and maximum temperatures were 4.49-8.59, 19.76-21.88 and 34.12-41.68 C, respectively. Larger seeds have a higher base and ceiling temperatures compared to smaller seeds. The thermal time of 50% germination was 1890, 954, 1551, and 1188 degree-hours for small and large greenish-gay and reddish-brown seeds, respectively. The lower germination rate in greenish-gray seeds compared with reddish-brown colored seeds could be due to the lower seed vigor or viability. Not all castor seeds are produced at the same time during the growing season. Therefore, the last produced grains lose ideal grain filling conditions, which cause them to be smaller, less dense, and have low vigor.

Graphical Abstract

Effect of Seed Color and Size on Cardinal Temperatures of Castor Bean (Ricinus Communis L.) Seed Germination

Highlights

  • Cardinal temperatures vary among castor bean seeds with different seed coat color.
  • Smaller seeds required a higher temperature to initial seed germination compared with larger ones.
  • The thermal time required for germination of Reddish-brown seeds was lower than greenish-gray seeds.

Keywords

Main Subjects


Akande T.O., Odunsi A.A., Akinfala E.O. 2016. A review of nutritional and toxicological implications of castor bean (Ricinus communis L.) meal in animal feeding systems. Journal of Animal Physiology and Animal Nutrition 100(2): 201-210. https://doi.org/10.1111/jpn.12360
Alvarado V., Bradford K.J. 2002. A hydrothermal time model explains the cardinal temperatures for seed germination. Plant, Cell & Environment 25(8): 1061–1069. https://doi.org/10.1046/j.1365-3040.2002.00894.x
Annongu A.A., Joseph J.K. 2008. Proximate analysis of castor seeds and cake. Journal of Applied Sciences and Environmental Management 12(1). https://doi.org/10.4314/jasem.v12i1.55567
Baskin C.C., Baskin J.M. 2014. Seeds: ecology, biogeography and evolution of dormancy and germination., (2nd in)(Academic Press: San Diego, CA, USA).
Bauddh K., Singh K., Singh B., Singh R.P. 2015: Ricinus communis: a robust plant for bio-energy and phytoremediation of toxic metals from contaminated soil. Ecological Engineering 84: 640–652. https://doi.org/10.1016/j.ecoleng.2015.09.038
Bewley J.D., Bradford K., Hilhorst H. 2012. Seeds: physiology of development, germination and dormancy, Springer Science & Business Medi. 133-181 https://doi.org/10.1007/978-1-4614-4693-4_4
Bhatt A., Gairola S., El-Keblawy, A.A. 2016. Seed colour affects light and temperature requirements during germination in two Lotus species (Fabaceae) of the Arabian subtropical deserts. Revista de Biología Tropical 64(2): 483-492. https://doi.org/10.1139/cjb-2019-0096
Biswas P.S., Rashid M.M., Khatun H., Yasmeen R., Biswas J.K. 2019. Scope and Progress of Rice research harnessing cold tolerance. Advances in Rice Research for Abiotic Stress Tolerance 225–264. https://doi.org/10.1016/B978-0-12-814332-2.00011-3
Bita C., Gerats T.2013. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in plant science 4, 273. https://doi.org/10.3389/fpls.2013.00273
Butler M.A., King A.A. 2004. Phylogenetic comparative analysis: a modeling approach for adaptive evolution. The American Naturalist 164(6): 683–695. https://doi.org/10.1086/426002
Cleland E.E., Chuine I., Menzel A., Mooney H.A., Schwartz M.D. 2007. Shifting plant phenology in response to global change. Trends in ecology & evolution 22(7): 357–365. https://doi.org/10.1016/j.tree.2007.04.003
Cochrane A. 2017. Modeling seed germination response to temperature in Eucalyptus L’Her. (Myrtaceae) species in the context of global warming. Seed Science Research 27(2): 1–11. https://doi.org/10.1017/S0960258517000010
Drumond A.A.L., Sales J. de F., Zuchi J., Camelo G.N., Souza M.M.V. 2019. Physiological quality of castor seeds (Ricinus communis L.) after processing. Journal of Seed Science 41, 224–232. https://doi.org/10.1590/2317-1545v41n2215551
Fenner M.W. 2012. Seed ecology, Springer Science & Business Media.
Gusamo B.K., Jimbudo M. 2015. Tree-borne Oilseed Crops: Jatropha curcas, Ricinus communis, Anacardium occidentale and Some Native Trees for Oil Production for Bio-energy Source in Papua New Guinea. Journal of Agriculture and Environmental Sciences 4(2): 113–123. https://doi.org/10.15640/jaes.v4n2a13
Hardegree S.P. 2006. Predicting germination response to temperature. I. Cardinal-temperature models and subpopulation-specific regression. Annals of Botany 97(6): 1115–1125. https://doi.org/10.1093/aob/mcl071
Humara J.M., Casares A., Majada J. 2002. Effect of seed size and growing media water availability on early seedling growth in Eucalyptus globulus. Forest ecology and management 167(1-3): 1–11. https://doi.org/10.1016/S0378-1127(01)00697-1
ISTA .2017. International rules for seed testing.
Kamkar B., Al-AlahKamkar B., Al-Alahmadi M.J., Mahdavi-Damghani A., Villalobos F.J. 2012. Quantification of the cardinal temperatures and thermal time requirement of opium poppy (Papaver somniferum L.) seeds to germinate using non-linear regression models. Industrial Crops and Products 35(1): 192-198. https://doi.org/10.1016/j.indcrop.2011.06.033
Kamkar B., Koocheki A., Nassiri Mahallati M., Rezvani Moghaddam P. 2006. Cardinal temperatures for germination in three millet species (Panicum miliaceum, Pennisetum glaucum and Setaria italica). Asian Journal of Plant Science 5(2): 316–319. https://doi.org/10.3923/ajps.2006.316.319
Khan Marwat S., Khan E.A., Baloch M.S., Sadiq M., Ullah I., Javaria S., Shaheen S. 2017. Ricinus cmmunis: Ethnomedicinal uses and pharmacological activities. Pakistan journal of pharmaceutical sciences 30.
Knežević J., Tomić D., Jovanović D., Tmušić N., Štrbanović R., Poštić D., Stanisavljević R. 2019. Seed quality of oilseed rape varieties with different size and colors after three and fifteen months storage. Tarim Bilimleri Dergisi 25(4): 449–458. https://doi.org/10.15832/ankutbd.442650
Kuete V. 2014. Physical, hematological, and histopathological signs of toxicity induced by African medicinal plants. Toxicological Survey of African Medicinal Plants 635–657. https://doi.org/10.1016/B978-0-12-800018-2.00022-4
Lonati M., Moot D.J., Aceto P., Cavallero A., Lucas R.J. 2009. Thermal time requirements for germination, emergence and seedling development of adventive legume and grass species. New Zealand Journal of Agricultural Research 52(1): 17–29. https://doi.org/10.1080/00288230909510485
Marcos Filho J. 2015. Seed vigor testing: an overview of the past, present and future perspective. Scientia Agricola 72, 363–374. https://doi.org/10.1590/0103-9016-2015-0007
Martins V.F., Guimarães P.R., Silva R.R. Da, Semir J. 2006. Secondary seed dispersal by ants of Ricinus communis (Euphorbiaceae) in the Atlantic forest in southeastern Brazil: Influence on seed germination. Sociobiology 47, 265–274.
Martins V.F., Haddad C.R.B., Semir J. 2009. Seed germination of Ricinus communis in predicted settings after autochorous and myrmecochorous dispersal. The Journal of the Torrey Botanical Society 136(1): 84–90. https://doi.org/10.3159/08-RA-092R.1
Matos Júnior J.B., Dias A.N., Bueno C.F.D., Rodrigues P.A., Veloso Á.L.C., Faria Filho D.E. de 2011. Metabolizable energy and nutrient digestibility of detoxified castor meal and castor cake for poultry. Revista Brasileira de Zootecnia 40, 2439–2442. https://doi.org/10.1590/S1516-35982011001100022
Mavi K. 2010. The relationship between seed coat color and seed quality in watermelon Crimson sweet. Horticultural Science 37, 62–69. https://doi.org/10.17221/53/2009-HORTSCI
Mendes R. de C., Dias D.C.F. dos S., Pereira M.D., Berger P.G. 2009. Tratamentos pré-germinativos em sementes de mamona (Ricinus communis L.).: Revista Brasileira de Sementes 31, 187–194. https://doi.org/10.1590/S0101-31222009000100021
Miller P., Lanier W., Brandt S. 2001. Using growing degree days to predict plant stages. Ag/Extension Communications Coordinator, Communications Services, Montana State University-Bozeman, Bozeman, MO 59717, 994–2721.
Mobli A., Ghanbari A., Rastgoo M. 2018. Determination of cardinal temperatures of Flax-leaf Alyssum (Alyssum linifolium) in response to salinity, pH, and drought stress. Weed Science 66(4): 470-476. https://doi.org/10.1017/wsc.2018.19
Del Monte J.P., Aguado P.L., Tarquis A.M. 2014. Thermal time model of Solanum sarrachoides germination. Seed Science Research 24(4): 321 - 330. https://doi.org/10.1017/S0960258514000221
Motsa M.M., Slabbert M.M., Van Averbeke W., Morey L. 2015. Effect of light and temperature on seed germination of selected African leafy vegetables. South African Journal of Botany 99, 29–35. https://doi.org/10.1016/j.sajb.2015.03.185
Mwale S.S., Azam-Ali S.N., Clark J.A., Bradley R.G., Chatha M.R. 1994. Effect of temperature on the germination of sunflower (Helianthus annuus L.). Seed Science and Technology 22, 565–571.
O’Meara J.M., Burles S., Prochaska J.X., Prochter G.E., Bernstein R.A., Burgess K.M. 2006. The Deuterium-to-Hydrogen Abundance Ratio toward the QSO SDSS J155810. 16–003120.0. The Astrophysical Journal Letters 649, L61. https://doi.org/10.1086/508348
Ribeiro P.R., Willems L.A.J., Mutimawurugo M.C., Fernandez L.G., de Castro R.D., Ligterink W., Hilhorst H.W.M. 2015. Metabolite profiling of Ricinus communis germination at different temperatures provides new insights into thermo-mediated requirements for successful seedling establishment. Plant Science 239, 180–191. https://doi.org/10.1016/j.plantsci.2015.08.002
Sadashiv P.S. 2011. Acute toxicity study for Ricinus communis. Der Pharm Lett 3, 132–137.
Sadeghi H., Khazaei F., Sheidaei S., Yari L. 2011. Effect of seed size on seed germination behavior of safflower (Carthamus tinctorius L.). ARPN Journal of Agricultural and Biological Science 6, 5–8.
Saeed S., Shaukat S.S. 2000. Effect of seed size on germination, emergence, growth and seedling survival of Senna occidentalis Link. Pakistan Journal of Biological Sciences 3(2): 292–295. https://doi.org/10.3923/pjbs.2000.292.295
Sasidharan R., Venkatesan R. 2019. Seed elaiosome mediates dispersal by ants and impacts germination in Ricinus communis. Frontiers in Ecology and Evolution 7, 1–8. https://doi.org/10.3389/fevo.2019.00246
Severino L.S., Auld D.L., Baldanzi M., Cândido M.J.D., Chen G., Crosby W., Tan D., He X., Lakshmamma P., Lavanya C. 2012. A review on the challenges for increased production of castor. Agronomy Journal 104(4): 853–880. https://doi.org/10.2134/agronj2011.0210
Shafii B., Price W.J. 2001. Estimation of cardinal temperatures in germination data analysis. Journal of agricultural, biological, and environmental statistics 6, 356–366. https://doi.org/10.1198/108571101317096569
Soltani A. 2007. Application of SAS in Statistical Analysis, JDM Press, Mashhad.
Soltani A., Robertson M.J., Torabi B., Yousefi-Daz M., Sarparast R. 2006. Modelling seedling emergence in chickpea as influenced by temperature and sowing depth. Agricultural and forest meteorology 138(1-4): 156–167. https://doi.org/10.1016/j.agrformet.2006.04.004
Soltani A., Sinclair T.R. 2012. Modeling physiology of crop development, growth and yield, CABi. https://doi.org/10.1079/9781845939700.0000
Soriano D., Orozco-Segovia A., Márquez-Guzmán J., Kitajima K., Gamboa-de Buen A., Huante P. 2011. Seed reserve composition in 19 tree species of a tropical deciduous forest in Mexico and its relationship to seed germination and seedling growth. Annals of Botany 107(6): 939–951. https://doi.org/10.1093/aob/mcr041
Souza M.L., Fagundes M. 2014. Seed size as key factor in germination and seedling development of Copaifera langsdorffii (Fabaceae). American Journal of Plant Sciences 5(17): 2566–2573. https://doi.org/10.4236/ajps.2014.517270
Steiner F., Zuffo A.M., Busch A., Sousa T. de O., Zoz T. 2019. Does seed size affect the germination rate and seedling growth of peanuts under salinity and water stress? Pesquisa Agropecuária Tropical 49. https://doi.org/10.1590/1983-40632019v4954353
Timmermans B.G.H., Vos J., Van Nieuwburg J., Stomph T.J., Van der Putten P.E.L. 2007. Germination rates of Solanum sisymbriifolium temperature response models, effects of temperature fluctuations and soil water potential. Seed science research 17(3): 221. https://doi.org/10.1017/S0960258507785628
Tobe K., Li, X., Omasa K. 2004. Effects of five different salts on seed germination and seedling growth of Haloxylon ammodendron (Chenopodiaceae). Seed Science Research 14(4): 345–353. https://doi.org/10.1079/SSR2004188
Vaughton G., Ramsey M. 1998. Sources and consequences of seed mass variation in Banksia marginata (Proteaceae). Journal of Ecology 86(4): 563–573. https://doi.org/10.1046/j.1365-2745.1998.00279.x
Veloso A.C.R., Silva P.S., Siqueira W.K., Duarte K.L.R., Gomes I.L. V, Santos H.T., Fagundes M. 2017. Intraspecific variation in seed size and light intensity affect seed germination and initial seedling growth of a tropical shrub. Acta Botanica Brasilica 31, 736–741. https://doi.org/10.1590/0102-33062017abb0032
Wang R., Bai Y., Tanino K. 2004. Effect of seed size and sub-zero imbibition-temperature on the thermal time model of winterfat (Eurotia lanata (Pursh) Moq.). Environmental and Experimental Botany 51(3): 183–197. https://doi.org/10.1016/j.envexpbot.2003.10.001
Wang Z., Wang L., Liu Z., Li Y., Liu Q., Liu B. 2016: Phylogeny, seed trait, and ecological correlates of seed germination at the community level in a degraded sandy grassland. Frontiers in Plant Science 7, 1532. https://doi.org/10.3389/fpls.2016.01532
Willenborg C.J., Wildeman J.C., Miller A.K., Rossnagel B.G., Shirtliffe S.J. 2005. Oat germination characteristics differ among genotypes, seed sizes, and osmotic potentials. Crop Science 45(5): 2023–2029. https://doi.org/10.2135/cropsci2004.0722
Xu J., Li W., Zhang C., Liu W., Du G. 2014. Variation in seed germination of 134 common species on the eastern Tibetan Plateau: phylogenetic, life history and environmental correlates. Plos One 9. https://doi.org/10.1371/journal.pone.0098601
Yan W., Hunt L.A. 1999. An equation for modeling the temperature response of plants using only the cardinal temperatures. Annals of Botany 84(5): 607–614. https://doi.org/10.1006/anbo.1999.0955
Yin X., Kropff M.J., McLaren G., Visperas R.M. 1995. A nonlinear model for crop development as a function of temperature. Agricultural and Forest Meteorology 77(1-2): 1–16. https://doi.org/10.1016/0168-1923(95)02236-Q
Zhang X.K., Yang G.T., Chen L., Yin J.M., Tang Z.L., Li J.N. 2006. Physiological differences between yellow-seeded and black-seeded rapeseed (Brassica napus L.) with different testa characteristics during artificial aging. Seed Science and Technology 34(2): 373–381. https://doi.org/10.15258/sst.2006.34.2.13