Heat and Drought Stress Response and Related Management Strategies in Oilseed Rape

Document Type : Review Article

Author

Horticulture Crops Research Department, Sistan Agricultural and Natural Resources Research and Education Center, AREEO, Zabol, Iran

Abstract

Oilseed rape (Brassica napus L.) is one of the most important oil crops severely affected by heat or drought stress. Although the acreage and production of oilseed rape have been increasing steadily in the world, there are still serious concerns about edible oil demands supply for 9.1 billion by 2050. In addition, ongoing climate change and the susceptibility of oilseed rape to abiotic stresses threaten oilseed rape production in many parts of the world. Oilseed rape crops are particularly concerned with more frequent heat and drought stress. By facing oilseed rape crop with heat or drought stress, reduction in yield and yield component, oil concentration and change in fatty acids composition and phenological traits would be expected. On the other hand, there are several ways to mitigate the severe response of the plant to heat or drought stress such as detecting tolerant genotypes and modifying the planting method, sowing date, and tillage system. Additionally, optimization of plant growth regulators, fertilizers, bacterial growth regulators, and superabsorbent polymers is recommended to decrease the negative effects of drought or heat stress. Therefore, although heat or drought tolerance causes yield reduction but utilizing appropriate methods could reduce their disastrous effects.

Graphical Abstract

Heat and Drought Stress Response and Related Management Strategies in Oilseed Rape

Highlights

  • Oil and protein concentration, fatty acid composition, phonological traits, yield and yield ‎components are some characteristics affected by heat or drought stress.‎
  • Furrow planting, drill sowing, on-time sowing, effective residue management and ‎practicing minimum tillage are some agronomical technics to mitigate heat or drought ‎stress.‎
  • Foliar application of beneficial elements and plant growth promoters, utilizing efficient ‎fertilizers, superabsorbent polymers and bacterial plant growth promoters could reduce the ‎stress.‎
  • Evaluation of the relative water content, water use efficiency and drought-tolerant indices ‎could lead us to identify drought or heat stress-tolerant varieties.  ‎

Keywords

Main Subjects


Abdullah A.S. 2014. Minimum tillage and residue management increase soil water content, soil organic matter and canola seed yield and seed oil content in the semiarid areas of Northern Iraq. Soil and Tillage Research 144: 150-155. https://doi.org/10.1016/j.still.2014.07.017
Abedi T., and Pakniyat H. 2010. Antioxidant enzymes changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Czech Journal of Genetics and Plant Breeding 46(1): 27-34. https://doi.org/10.17221/67/2009-CJGPB
Ahmed M., and Khurshid Y. 2011. Does silicon and irrigation have impact on drought tolerance mechanism of sorghum? Agricultural water managemen 98(12): 1808-1812. https://doi.org/10.1016/j.agwat.2011.07.003
Aiken R., Baltensperger D., Krall J., Pavlista A., Johnson J. 2015. Planting methods affect emergence, flowering and yield of spring oilseed crops in the US central High Plains. Industrial Crops Products 69: 273-277. https://doi.org/10.1016/j.indcrop.2015.02.025
Aksouh-Harradj N., Campbell L., and Mailer R. 2006. Canola response to high and moderately high temperature stresses during seed maturation. Canadian Journal of plant science 86(4): 967-980. https://doi.org/10.4141/P05-130
Aksouh N., Jacobs B., Stoddard F., and Mailer R. 2001. Response of canola to different heat stresses. Australian Journal of Agricultural Research 52(8): 817-824. https://doi.org/10.1071/AR00120
Angadi S., Cutforth H., Miller P., McConkey B., Entz M., Brandt S., Volkmar K. 2000. Response of three Brassica species to high temperature stress during reproductive growth. Canadian Journal of plant science 80(4): 693-701. https://doi.org/10.4141/P99-152
Armandpisheh O., Irannejad H., Allahdadi I., Amiri R., Ebadi A.G., Koliaei A.A. 2009. Application of zeolite in drought stress on vigority of canola seed (Zarfam Cultivar). American-Eurasian Journal of Agricultural & Environmental Sciences 5: 832-837.
Ashraf M., Shahbaz M., Ali Q. 2013. Drought-induced modulation in growth and mineral nutrients in canola (Brassica napus L.). Pakistan Journal of Botany 45(1): 93-98.
Aslam M., Nelson M., Kailis S., Bayliss K., Speijers J., Cowling W. 2009. Canola oil increases in polyunsaturated fatty acids and decreases in oleic acid in drought‐stressed Mediterranean‐type environments. Plant Breeding 128(4): 348-355. https://doi.org/10.1111/j.1439-0523.2008.01577.x
Bagheri H., Jamaati-e-Somarin S. 2011. Study of drought stress on agronomic traits of winter canola (Brassica napus L.). Scientific Research and Essays 6(25): 5285-5289. doi: https://doi.org/10.5897/SRE11.831
Bakhshi B., AmiriOghan H., Alizadeh B., Rameeh V., Payghamzadeh K., Kiani D., Rabiee M., Rezaizad A., Shiresmaeili G., Dalili A. 2021. Identification of promising oilseed rape genotypes for the tropical regions of Iran using multivariate analysis. Agrotechniques in Industrial Crops. https://doi.org/10.1101/2021.02.23.431199
Baligar V., Fageria N., He Z. 2001. Nutrient use efficiency in plants. Communications in soil science plant analysis 32(7-8): 921-950. https://doi.org/10.1081/CSS-100104098
Bouchereau A., Clossais-Besnard N., Bensaoud A., Leport L., Renard and Agronomy M.J.E.J.o. 1996. Water stress effects on rapeseed quality 5(1-2): 19-30. https://doi.org/10.1016/S1161-0301(96)02005-9
Bouslama M., and Schapaugh Jr, W. 1984. Stress tolerance in soybeans. I. Evaluation of three screening techniques for heat and drought tolerance 1. Crop Science 24(5): 933-937. https://doi.org/10.2135/cropsci1984.0011183X002400050026x
Buttar G., Thind H., Aujla M. 2006. Methods of planting and irrigation at various levels of nitrogen affect the seed yield and water use efficiency in transplanted oilseed rape (Brassica napus L.). Agricultural water management 85(3): 253-260. https://doi.org/10.1016/j.agwat.2006.05.008
Canvin D.T. 1965. The effect of temperature on the oil content and fatty acid composition of the oils from several oil seed crops. Canadian Journal of Botany 43(1): 63-69. https://doi.org/10.1139/b65-008
Caviglia O., and Sadras V. 2001. Effect of nitrogen supply on crop conductance, water-and radiation-use efficiency of wheat. Field Crops Research 69(3): 259-266. https://doi.org/10.1016/S0378-4290(00)00149-0
Choukan R., Taherkhani T., Ghanadha M., and Khodarahmi M. 2006. Evaluation of drought tolerance in grain maize inbred lines using drought tolerance indices. Iranian Journal of Crop Sciences 8(29): 79-89.
Clarke J.M., DePauw R.M., Townley‐Smith T.F. 1992. Evaluation of methods for quantification of drought tolerance in wheat. Crop Science 32(3): 723-728. https://doi.org/10.2135/cropsci1992.0011183X003200030029x
Claussen W. 2005. Proline as a measure of stress in tomato plants. Plant Science 168(1): 241-248. https://doi.org/10.1016/j.plantsci.2004.07.039
Cowling W.A., Tarr A. 2004. Effect of genotype and environment on seed quality in sweet narrow-leafed lupin (Lupinus angustifolius L.). Australian Journal of Agricultural Research 55(7): 745-751. https://doi.org/10.1071/AR03223
Danesh-Shahraki A., Nadian H., Bakhshandeh A., Fathi G., Alamisaied K., Gharineh M. 2008. Optimization of irrigation and nitrogen regimes for rapeseed production under drought stress. Journal of Agronomy 7(4): 321-326. https://doi.org/10.3923/ja.2008.321.326
Din J., Khan S., Ali I., Gurmani A. 2011. Physiological and agronomic response of canola varieties to drought stress. Journal of Animal and Plant Sciences 21(1): 78-82.
Dornbos D., and Mullen R. 1992. Soybean seed protein and oil contents and fatty acid composition adjustments by drought and temperature. Journal of the American Oil Chemists Society 69(3): 228-231. https://doi.org/10.1007/BF02635891
Downey R. 1983. The origin and description of the Brassica oilseed crops. High & Low Erucic Acid Rapeseed Oils: 1-20. https://doi.org/10.1016/B978-0-12-425080-2.50006-2
Epstein E. 2009. Silicon: its manifold roles in plants. Annals of Applied Biology 155(2): 155-160. https://doi.org/10.1111/j.1744-7348.2009.00343.x
Fageria N., Baligar V., Clark R. 2002. Micronutrients in crop production. Advances in agronomy 77: 185-268. https://doi.org/10.1016/S0065-2113(02)77015-6
FAO. 2018. Food and Agriculture Organization of the United Nations, Food and Agricultural Commodities Production. Available online: http://www.fao.org/statistics/en
Faraji A., Latifi N., Soltani A., Rad A.H.S. 2009. Seed yield and water use efficiency of canola (Brassica napus L.) as affected by high temperature stress and supplemental irrigation. Agricultural water management 96(1): 132-140. https://doi.org/10.1016/j.agwat.2008.07.014
Farooq M., Wahid A., Lee D.-J. 2009. Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiologiae Plantarum 31(5): 937-945. https://doi.org/10.1007/s11738-009-0307-2
Farshadfar E., and Sutka J. 2002. Screening drought tolerance criteria in maize. Acta Agronomica Hungarica, 50(4): 411-416. https://doi.org/10.1556/AAgr.50.2002.4.3
Fernandez G.C. 1993. Effective selection criteria for assessing plant stress tolerance. Adaptation of food crops to temperature and water stress: 13-181992257270.
Fischer R., and Maurer R. 1978. Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research 29(5): 897-912. https://doi.org/10.1071/AR9780897
Gan Y., Angadi S., Cutforth H., Potts D., Angadi V., McDonald C. 2004. Canola and mustard response to short periods of temperature and water stress at different developmental stages. Canadian Journal of Plant Science 84(3): 697-704. https://doi.org/10.4141/P03-109
Garg B. 2003. Nutrient uptake and management under drought: nutrient-moisture interaction. Current Agriculture Research Journal 27(1/2): 1-8.
Gavuzzi P., Rizza F., Palumbo M., Campanile R., Ricciardi G., Borghi B. 1997. Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Canadian Journal of Plant Science 77(4): 523-531. https://doi.org/10.4141/P96-130
Gibson L., Mullen R. 1996. Soybean seed composition under high day and night growth temperatures. Journal of the American Oil Chemists' Society 73(6): 733-737. https://doi.org/10.1007/BF02517949
Green A. 1986. Effect of Temperature during Seed Maturation on the Oil Composition of Low‐Linolenic Genotypes of Flax 1. Crop Science 26(5): 961-965. https://doi.org/10.2135/cropsci1986.0011183X002600050025x
Gunasekera C., Martin L., Siddique K., and Walton G. 2006. Genotype by environment interactions of Indian mustard (Brassica juncea L.) and canola (B. napus L.) in Mediterranean-type environments: 1. Crop growth and seed yield. European Journal of Agronomy 25(1): 1-12. https://doi.org/10.1016/j.eja.2005.08.002
Gunes A., Cicek N., Inal A., Alpaslan M., Eraslan F., Guneri E., Guzelordu T. 2006. Genotypic response of chickpea (Cicer arietinum L.) cultivars to drought stress implemented at pre-and post-anthesis stages and its relations with nutrient uptake and efficiency. Plant Soil Environment 52(8): 368. https://doi.org/10.17221/3454-PSE
Habibi G. 2014. Silicon supplementation improves drought tolerance in canola plants. Russian Journal of Plant Physiology 61(6): 784-791. https://doi.org/10.1134/S1021443714060077
Haq T., Ali A., Nadeem S., Maqbool M.M., Ibrahim M. 2014. Performance of canola cultivars under drought stress induced by withholding irrigation at different growth stages. Soil & Environment 33(1): 43-50.
Ilyas N., Bano A. 2010. Azospirillum strains isolated from roots and rhizosphere soil of wheat (Triticum aestivum L.) grown under different soil moisture conditions. Biology Fertility of Soils 46(4): 393-406. https://doi.org/10.1007/s00374-009-0438-z
Jan S.A., Bibi N., Shinwari Z.K., Rabbani M.A., Ullah S., Qadir A., Khan N. 2017. Impact of salt, drought, heat and frost stresses on morpho-biochemical and physiological properties of Brassica species: An updated review. Agriculture and Rural Development 2(1): 1-10.
Jensen C., Mogensen V., Mortensen G., Fieldsend J., Milford G., Andersen M., and Thage J. 1996. Seed glucosinolate, oil and protein contents of field-grown rape (Brassica napus L.) affected by soil drying and evaporative demand. Field Crops Research 47(2-3): 93-105. https://doi.org/10.1016/0378-4290(96)00026-3
Ji S., Unger P.W. 2001. Soil water accumulation under different precipitation, potential evaporation, and straw mulch conditions. Soil Science Society of America journal 65 (2): 442-448. https://doi.org/10.2136/sssaj2001.652442x
Kalantar Ahmadi S.A., Ebadi A., Daneshian J., Jahanbakhsh S., Siadat S.A., Tavakoli H. 2015. Effects of irrigation deficit and application of some growth regulators on defense mechanisms of canola. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 43(1): 124-130. https://doi.org/10.15835/nbha4319668
Khalaj H., Noori S.S., Rad A.S., Akbari G.A., Dadi E.A., Labbafi M. (2007). The assessment of appling drought stress on different canola (Brassica napus L.) cultivars. Paper presented at the The 12th International Rapeseed Congress.
Khalili M., Aboughadareh A.P., Naghavi M.R., Talebzadeh S. 2012. Response of spring canola (Brassica napus L.) genotypes to water deficit stress. International Journal of Agriculture and Crop Sciences 4: 1579-1586. https://doi.org/10.5539/jas.v4n11p78
Khan M.A., Ashraf M., Mujtaba S., Shirazi M., Khan M., Shereen A., Mumtaz S., Siddiqui M.A., Kaleri G.M. 2010. Evaluation of high yielding canola type Brassica genotypes/mutants for drought tolerance using physiological indices as screening tool. Pakistan Journal of Botany 42(6): 3807-3816.
Kukal S., Humphreys E., Thaman S., Singh B., Timsina J. 2010. Factors affecting irrigation water savings in raised beds in rice and wheat. Field Crops Research 118(1): 43-50. https://doi.org/10.1016/j.fcr.2010.04.003
Lobell D.B., Gourdji S.M. 2012. The influence of climate change on global crop productivity. Plant physiology 160(4): 1686-1697. https://doi.org/10.1104/pp.112.208298
Mailer R., Pratley J. 1990. Field studies of moisture availability effects on glucosinolate and oil concentration in the seed of rape,(Bassica napus ‎l.) and turnip rape (Brassica rapa l. var. silvestris (lam.) briggs)‎. Canadian journal of plant science 70(2): 399-407. https://doi.org/10.4141/cjps90-047
Mailer R.J., Cornish P. 1987. Effects of water stress on glucosinolate and oil concentrations in the seeds of rape (Brassica napus L.) and turnip rape (Brassica rapa L. var. silvestris [Lam.] Briggs). Australian Journal of Experimental Agriculture 27(5): 707-711. https://doi.org/10.1071/EA9870707
Maimona S., Noshin I., Roomina M., Fatima B., Nazima B., Quality F. 2016. Drought mitigation potential of Azospirillum inoculation in canola (Brassica napus). Journal of Applied Botany 89: 270-278.
Majidi M., Rashidi F., Sharafi Y. 2015. Physiological traits related to drought tolerance in Brassica. International Journal of Plant Production 9(4): 541-559.
Masoud S.M. 2007. The effects of water deficit during growth stages of canola (Brassica napus L.). American eurasian journal of agricultural and environmental sciences 2: 417-422.
Mathur D., Wattal P. 1995. Influence of water stress on seed yield of Canadian rape at flowering and role of metabolic factors. Plant Physiology and Biochemistry 22: 115-118.
McWilliams D. 2019. Drought strategies for cotton. Cooperative Extension Service Circular 582. College of Agriculture and Home Economics, New Mexico State University Library, Las Cruces: New Mexico State University, USA.
Mendham N., Russell J., Jarosz N. 1990. Response to sowing time of three contrasting Australian cultivars of oilseed rape (Brassica napus). The Journal of Agricultural Science 114(3): 275-283. https://doi.org/10.1017/S002185960007266X
Mendham N., Salisbury P. 1995. Physiology: crop development, growth and yield.
Mirzaei A., Naseiri R., Moghadam A., Esmailpour-Jahromi M. 2013. The effects of drought stress on seed yield and some agronomic traits of canola cultivars at different growth stages. Bulletin Environmental Pharmacology Life Science 2: 115-121.
Moaveni P., Ebrahimi A., Farahani H.A. 2010. Physiological growth indices in winter rapeseed (Brassica napus L.) cultivars as affected by drought stress at Iran. Journal of Cereals Oilseeds 1(1): 11-16.
Moghadam H.R.T., Zahedi H., Ghooshchi F. 2011. Oil quality of canola cultivars in response to water stress and super absorbent polymer application. Pesquisa Agropecuária Tropical 41: 579-586. https://doi.org/10.5216/pat.v41i4.13366
Moradshahi A., Salehi E.B., Khold B.B. 2004. Some physiological responses of canola (Brassica napus l.) To water deficit stress un-der laboratory conditions. Iranian Journal of Science and Technology Transactions A- Science 28: 43-50.
Mwale S., Hamusimbi C., and Mwansa K. 2003. Germination, emergence and growth of sunflower (Helianthus annuus L.) in response to osmotic seed priming. Seed Science Technology 31(1): 199-206. https://doi.org/10.15258/sst.2003.31.1.21
Nazemi G., Alhani A. 2014. The effects of water deficit stress on seed yield and quantitative traits of Canola cultivars. International Journal of Farming and Allied Sciences 3: 819-822.
Ok C.-H. 2003. Amendments and construction systems for improving the performance of sand-based putting greens: University of Missouri-Columbia. https://doi.org/10.2134/agronj2003.1583
Pawlowski A., Lejcus K., Garlikowski D., Orzeszyna H. 2009. Geocomposite with superabsorbent as an element improving water availability for plants on slopes. Paper presented at the EGU General Assembly Conference Abstracts.
Pritchard F., Eagles H., Norton R., Salisbury P., Nicolas M. 2000. Environmental effects on seed composition of Victorian canola. Australian Journal of Experimental Agriculture 40(5): 679-685. https://doi.org/10.1071/EA99146
Rao M., and Mendham N. 1991. Comparison of chinoli (B. compestris subs. Oleifera, subsp. Chinesis) and B. napus oilseed rape using different growth regulators, plant population, densities and irrigation treatments. Journal of Agriculture Science 177(3): 177-178. https://doi.org/10.1017/S0021859600065266
Rashtbari M., Alikhani H.A., Ghorchiani M. 2012. Effect of vermicompost and municipal solid waste compost on growth and yield of canola under drought stress conditions. International Journal of Agriculture: Research Review 2(4): 395-402.
Raza M.A.S., Saleem M.F., Ashraf M.Y., Ali A., Asghar H.N. 2012. Glycinebetaine applied under drought improved the physiological efficiency of wheat (Triticum aestivum L.) plant. Soil & Environment 31(1): 67-71.
Raza M.A.S., Shahid A.M., Saleem M.F., Khan I.H., Ahmad S., Ali M., Iqbal R. 2017. Effects and management strategies to mitigate drought stress in oilseed rape (Brassica napus L.): a review. Zemdirbyste 104: 85-94. https://doi.org/10.13080/z-a.2017.104.012
Reader M., Dracup M., Atkins C. 1997. Transient high temperatures during seed growth in narrow-leafed lupin (Lupinus angustifolius L.) I. High temperatures reduce seed weight. Australian Journal of Agricultural Research 48(8): 1169-1178. https://doi.org/10.1071/A97042
Resketo P., and Szabo L. 1992. The effect of drought on development and yield components of soybean. International Journal of Tropical Agriculture 8: 347-354.
Rezayian M., Niknam V., Ebrahimzadeh H. 2018. Improving tolerance against drought in canola by penconazole and calcium. Pesticide biochemistry physiology 149: 123-136. https://doi.org/10.1016/j.pestbp.2018.06.007
Richards R. 1978. Genetic analysis of drought stress response in rapeseed (Brassica campestris and B. napus). I. Assessment of environments for maximum selection response in grain yield. Euphytica 27(2): 609-615. https://doi.org/10.1007/BF00043191
Robertson M., Fukai S., and Peoples M. 2004. The effect of timing and severity of water deficit on growth, development, yield accumulation and nitrogen fixation of mungbean. Field Crops Research 86(1): 67-80. https://doi.org/10.1016/S0378-4290(03)00120-5
Rosielle A., and Hamblin J. 1981. Theoretical aspects of selection for yield in stress and non‐stress environment. Crop Science 21(6):943-946. https://doi.org/10.2135/cropsci1981.0011183X002100060033x
Schneider K.A., Rosales‐Serna R., Ibarra‐Perez F., Cazares‐Enriquez B., Acosta‐Gallegos J.A., Ramirez‐Vallejo P., Wassimi N., Kelly J.D. 1997. Improving common bean performance under drought stress. Crop Science 37(1): 43-50. https://doi.org/10.2135/cropsci1997.0011183X003700010007x
Sepehri A., Golparvar A.R. 2011. The effect of drought stress on water relations, chlorophyll content and leaf area in canola cultivars (Brassica napus L.). Electronic Journal of Biology 7(3): 49-53.
Shabani A., Sepaskhah A., Kamgar-Haghigh A. 2013. Growth and physiologic response of rapeseed (Brassica napus L.) to deficit irrigation, water salinity and planting method. International Journal of Plant Production 7(3): 569-596.
Shafiq S., Akram N.A., Ashraf M., Arshad A. 2014. Synergistic effects of drought and ascorbic acid on growth, mineral nutrients and oxidative defense system in canola (Brassica napus L.) plants. Acta Physiologiae Plantarum 36(6): 1539-1553. https://doi.org/10.1007/s11738-014-1530-z
Shahsavari N., Jais H.M., Rad A.H.S. 2014. Effect of zeolite and zinc on the biochemical characteristics of canola upon drought stress. Sains Malaysiana 43(10): 1549-1555.
Shahverdikandi M.A., Tobeh A., Godehkahriz S.J., Rastegar Z. 2011. The study of germination index of canola cultivars for drought resistance. International Journal of Plant Production 2(3): 89-95.
Sharghi Y., Rad A.H.S., Band A.A., Noormohammadi G., Zahedi H. 2011. Yield and yield components of six canola (Brassica napus L.) cultivars affected by planting date and water deficit stress. African Journal of Biotechnology 10(46): 9309-9313. https://doi.org/10.5897/AJB11.048
Shirani Rad A. 2011. Zeolite and nitrogen rates effect on some agronomic traits and fatty acids of winter rapeseed under non water and water stress conditions. International Journal of Science Advanced Technology 1(8): 114-121.
Shirani Rad A.H.S., Shahsavari N., Fard N.S. 2017. Response of canola advanced lines to delay plantings upon late season drought stress. Journal of Scientific Agriculture 1: 307-311. https://doi.org/10.25081/jsa.2017.v1.837
Si P., Mailer R.J., Galwey N., Turner D.W. 2003. Influence of genotype and environment on oil and protein concentrations of canola (Brassica napus L.) grown across southern Australia. Australian Journal of Agricultural Research 54(4): 397-407. https://doi.org/10.1071/AR01203
Si P., Walton G. 2004. Determinants of oil concentration and seed yield in canola and Indian mustard in the lower rainfall areas of Western Australia. Australian Journal of Agricultural Research 55(3): 367-377. https://doi.org/10.1071/AR03151
Simane B., Struik P., Nachit M., Peacock J. 1993. Ontogenetic analysis of yield components and yield stability of durum wheat in water-limited environments. Euphytica 71(3): 211-219. https://doi.org/10.1007/BF00040410
Sivapalan S. 2001. Effect of a polymer on growth and yield of soybeans (Glycine max) grown in a coarse textured soil. Paper presented at the Irrigation 2001 Regional Conference.
Sonobe K., Hattori T., An P., Tsuji W., Eneji A.E., Kobayashi S., Kawamura Y., Tanaka K., Inanaga S. 2010. Effect of silicon application on sorghum root responses to water stress. Journal of Plant Nutrition 34(1): 71-82. https://doi.org/10.1080/01904167.2011.531360
Stone P., Nicolas M. 1994. Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat stress. Functional Plant Biology 21(6): 887-900. https://doi.org/10.1071/PP9940887
Tayo T., and Morgan D. 1975. Quantitative analysis of the growth, development and distribution of flowers and pods in oil seed rape (Brassica napus L.). The Journal of Agricultural Science 85(1): 103-110. https://doi.org/10.1017/S0021859600053466
Tesfamariam E.H., Annandale J.G., Steyn J.M. 2010. Water stress effects on winter canola growth and yield. Agronomy Journal 102(2): 658-666. https://doi.org/10.2134/agronj2008.0043
Thakore Y. 2006. The biopesticide market for global agricultural use. Industrial Biotechnology 2(3): 194-208.
https://doi.org/10.1089/ind.2006.2.194
Tohidi moghadam H., Shirani Rad A., Nour-Mohammadi G., Habibi D., and Mashhadi-Akbar-Boojar M. 2009. Effect of super absorbent application on antioxidant enzyme activities in canola (Brassica napus L.) cultivars under water stress conditions. Journal of Agricultural Biological Sciences 4(3): 215-223. https://doi.org/10.3844/ajabssp.2009.215.223
Triboi-Blondel A.-M., Renard M. 1999. Effects of temperature and water stress on fatty acid composition of rapeseed oil. Paper presented at the Proceedings of the 10th International Rapeseed Congress.
Turan M., Ataoğlu N., Şahιn F. 2006. Evaluation of the capacity of phosphate solubilizing bacteria and fungi on different forms of phosphorus in liquid culture. Journal of Sustainable Agriculture 28(3): 99-108. https://doi.org/10.1300/J064v28n03_08
Ullah F., Bano A., and Nosheen A. 2012. Effects of plant growth regulators on growth and oil quality of canola (Brassica napus L.) under drought stress. Pakistan Journal of Botany 44(6): 1873-1880.
Van Eerd L.L., Congreves K.A., Hayes A., Verhallen A., Hooker D.C. 2014. Long-term tillage and crop rotation effects on soil quality, organic carbon, and total nitrogen. Canadian Journal of Soil Science 94(3): 303-315. https://doi.org/10.4141/cjss2013-093
Walton G., Si P., Bowden B. 1999. Environmental impact on canola yield and oil. Paper presented at the 10th International Rapeseed Congress.
Warwick S., Francis A., and Al-Shehbaz I. 2006. Brassicaceae: species checklist and database. Plant Systematics and Evolution 259(2-4): 249-258. https://doi.org/10.1007/s00606-006-0422-0
Wu W., Ma B.L., Whalen J.K. 2018. Enhancing rapeseed tolerance to heat and drought stresses in a changing climate: perspectives for stress adaptation from root system architecture Advances in agronomy. Elsevier. https://doi.org/10.1016/bs.agron.2018.05.002
Yarnia M., Arabifard N., Khoei F.R., Zandi P. 2011. Evaluation of drought tolerance indices among some winter rapeseed cultivars. African Journal of Biotechnology 10(53): 10914-10922. https://doi.org/10.5897/AJB11.1748
Young F., Bewick L., Pan W., Berklian Y. 2008. Systems approach to crop rotation research: Guidelines and challenges. Crop rotation. Nova Science Publishers, New York: 41-69.
Zahedi H., Moghadam H.T. 2011. Effect of drought stress on antioxidant enzymes activities with zeolite and selenium application in canola cultivars. Research on crops 12(2): 388-392.
Zahedi H., Noormohammadi G., Rad A.H.S., Habibi D., Boojar M.M.A. 2009. Effect of zeolite and foliar application of selenium on growth, yield and yield component of three canola cultivar under conditions of late season drought stress. Notulae Scientia Biologicae 1(1): 73-80. https://doi.org/10.15835/nsb113500
Zarei G., Shamsi H., and Dehghani,S.M. 2010. The effect of drought stress on yield, yield components and seed oil content of three autumnal rapeseed cultivars (Brassica napus L.). Journal of Research in Agriculture Science 6(1): 29-36.
Zhang J., Sun J., Duan A., Wang J., Shen X., Liu X. 2007. Effects of different planting patterns on water use and yield performance of winter wheat in the Huang-Huai-Hai plain of China. Agricultural water management 92(1-2): 41-47. https://doi.org/10.1016/j.agwat.2007.04.007