Plant Regeneration via Direct Somatic Embryogenesis in Three Strawberry (Fragaria ananassa Duch.) Cultivars

Document Type : Original Article

Authors

1 Crops and Horticultural Science Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, AREEO, Kermanshah, Iran

2 Department of Horticultural Sciences, Faculty of Agriculture, Kurdistan University, Sanandaj, Iran

Abstract

Cultivated strawberry (Fragaria×ananassa Duch.) is one of the most important fruit plants for both fresh consumption and food processing. The aim of this study was plant regeneration via direct somatic embryogenesis in three strawberry cultivars of Kurdistan, Paros and Camarosa. For this purpose, leaf blade of cultivars were cultured on Murashige and Skoog (MS) medium supplemented with Thidiazuron (TDZ) at 1, 2, 3, and 4 mg/L alone or in combinations with the different concentrations (0, 0.25, 0.5, and 1 mg/L) of auxin 2,4-dichlorophenoxy acetic acid (2,4-D). All data were analyzed by one-way analysis of variance (ANOVA) using factorial experimental based on completely randomized design with four replication and means were compared with Duncan’s tests at p< 0.05. The highest induction frequency of embryogenesis and number of somatic embryos per explants was obtained on MS medium containing 3 mg/L TDZ supplemented with 0.25 mg/L 2,4-D. In this medium, the maximum number of globular embryos per explants obtained for the cultivars of Camarosa (25.75), Paros (22.00) and Kurdistan (14.75). The globular embryos of the leaf explants developing into cotyledonary embryos were cultured on MS medium supplemented with sucrose at a concentration of 1.5, 3, 6, 9, and 12%. Among the tested concentrations, 6% sucrose was found superior for uniform embryo developmental stages.

Graphical Abstract

Plant Regeneration via Direct Somatic Embryogenesis in Three Strawberry (Fragaria ananassa Duch.) Cultivars

Highlights

  • Somatic embryogenesis is affected by the interaction between the type and concentration of plant growth regulator and cultivar.
  • Somatic embryogenesis occurs due to changes in the level of auxins and cytokinins in medium.
  • TDZ alone or in combination with 2,4-D play an important role in somatic embryogenesis of strawberry.
  • Increasing sucrose concentrations in the medium improve the development of globular somatic embryos.

Keywords

Main Subjects


Bakhshaie M., Babalar M., Mirmasoumi M., Khalighi A. 2010. Effects of light, sucrose, and cytokinins on somatic embryogenesis in Lilium ledebourii (Baker) Bioss. via transverse thin cell-layer cultures of bulblet microscales. The Journal of Horticultural Science and Biotechnology 85(6): 491-496. https://doi.org/10.1080/14620316.2010.11512703
Biswas M., Islam R., Hossian M. 2007. Somatic embryogenesis in strawberry (Fragaria sp.) Through callus culture. Plant Cell. Tissue and Organ Culture 90(1): 40-45. https://doi.org/10.1007/s11240-007-9247-y
Biswas M., Dutt M., Roy U., Islam R., Hossain M. 2009. Development and evaluation of in vitro somaclonal variation in strawberry for improved horticultural traits. Scientia Horticulturae 122(3): 409-416.
https://doi.org/10.1016/j.scienta.2009.06.002
Boxus P. 1999. Micropropagation of strawberry via axillary shoots proliferation. In: Plant Cell Culture Protocols. Methods in Molecular Biology. Part III. Plant Propagation In Vitro. Hall R. D. (ed.) Humana Press Inc., Totowa NJ 11: 103-114. https://doi.org/10.1385/1-59259-583-9:103
Debnath S. C. 2018. In Thidiazuron: From urea derivative to plant growth regulator 139-158 pp. https://doi.org/10.1007/978-981-10-8004-3_6
Feng J.H., Chen J.T. 2014. A novel in vitro protocol for inducng direct somatic embryogenesis in Phalaeopsis aphrodite without taking explants. The Scientific World Journal 1-7. https://doi.org/10.1155/2014/263642
Fehér A. 2015. Somatic embryogenesis stress-induced remodeling of plant cell fate. Biochim Biophys Acta BBA-Gene Regulatory Mechanisms 1849(4): 385-402. https://doi.org/10.1016/j.bbagrm.2014.07.005
George E.F., Hall M.A., Klerk G.D. 2008. Plant propagation by tissue culture. Springer. 3rd Edition 504 pp. https://doi.org/10.1007/978-1-4020-5005-3
Gerdakaneh M., Mozafari A.A., Sioseh-mardah A., Sarabi B. 2011. Effects of different amino acids on somatic embryogenesis of strawberry (Fragaria ananassa Duch.) Acta Physiolia Plantarum 33(5): 1847-1852. https://doi.org/10.1007/s11738-011-0725-9
Gerdakaneh M., Zohor M. 2013. The effect of picloram on somatic embryogenesis of different explants of strawberry (Fragaria ananassa Duch.). Biotechnology Journal International 3(2):133-142. https://doi.org/10.9734/BBJ/2013/2370
Ghobeishavi H., Dorani Uliaie E., Alavikia S.S., Valizadeh M. 2015. Study of Factors Influencing Somatic Embryogenesis in Rice (Oryza Sativa L.). International Journal of Advanced Biological and Biomedical Research 3 (1): 43-50.
Ghosh A., Igamberdiev A.U., Debnath S.C. 2018. Thidiazuron-induced somatic embryogenesis and changes of antioxidant properties in tissue cultures of half-high blueberry plants. Scientific Report 8 (16978): 1-11. https://doi.org/10.1038/s41598-018-35233-6
Guo B., Abbasi B.H., Zeb A., Xu L.L., Wei Y.H. 2011. Thidiazuron: a multi-dimensional plant growth regulator. African Journal of Biotechnology 10(45): 8984-9000. https://doi.org/10.5897/AJB11.636
Hancock J., Sjulin T., Lobos G. 2008. Strawberries. In: Hancock J.F. (eds) Temperate Fruit Crop Breeding. Springer 393-437 pp. https://doi.org/10.1007/978-1-4020-6907-9_13
Horstman A., Bemer M., Boutilier K. 2017. A transcriptional view on somatic embryogenesis. Regeneration 4(4): 201-216. https://doi.org/10.1002/reg2.91
Kou Y., Yuan C., Zhao Q., Liu G., Nie J., Zhimin M., Cheng C., Teixeira da Silva J.A., Zhao, L. 2016. Thidiazuron triggers morphogenesis in Rosa canina L. protocorm-like bodies by changing incipient cell fate. Frontiers Plant Science 7(557): 1-13. https://doi.org/10.3389/fpls.2016.00557
Kumar V., Van Staden J. 2017. New insights into plant somatic embryogenesis: an epigenetic view. Acta Physiolia Plantarum 39(194): 1-17. https://doi.org/10.1007/s11738-017-2487-5
Lim JH., Kim SD. 2009. Synergistic plant growth promotion by the indigenous auxins-producing PGPR Bacillus subtilis AH18 and Bacillus licheniforims K11. Journal of the Korean Society for Applied Biological Chemistry 52: 531–538. https://doi.org/10.3839/jksabc.2009.090
Lee P.L., Chen J.T. 2014. Plant regeneration via callus culture and subsequent in vitro flowering of Dendrobium huoshanense. Acta Physiologiae Plantarum 36: 2619- 2625. https://doi.org/10.1007/s11738-014-1632-7
Loyola-Vargas V.M., Avilez-Montalvo J.R., Avilez-Montalvo R.N., Márquez-López R.E., Galaz-Ávalos R.M., Mellado-Mojica E. 2016. Somatic embryogenesis in Coffea spp. Springer 241-261 pp. https://doi.org/10.1007/978-3-319-33705-0_15
Mahendran G., Bai V.N. 2012. Direct somatic embryogenesis and plant regeneration and from seed derived protocorms of Cymbidium bicolor Lindl. Scientia Horticulturae 135: 40-44. https://doi.org/10.1016/j.scienta.2011.12.003
Moradi S., Daylami S.D., Arab M., Vahdati K. 2017. Direct somatic embryogenesis in Epipactis veratrifolia, a temperate terrestrial orchid. The Journal of Horticultural Science and Biotechnology 92(1): 88-97. https://doi.org/10.1080/14620316.2016.1228434
Nic-Can G.I., Loyola-Vargas V.M. 2016. The role of the auxins during somatic embryogenesis. from book somatic embryogenesis: fundamental aspects and applications. Springer 171 -182 pp. https://doi.org/10.1007/978-3-319-33705-0_10
Ouyang Y., Chen Y., Lu J., da Silva J.A.T., Zhang X., Ma G. 2016. Somatic embryogenesis and enhanced shoot organogenesis in Metabriggsia ovalifolia. Scientific Reports (6) 2466: 21-9. https://doi.org/10.1038/srep24662
Pulianmackal A.J., Kareem A.V.K., Durgaprasad K., Trivedi Z.B., Prasad K. 2014. Competence and regulatory interactions during regeneration in plants. Frontiers Plant Science 142(5): 1-16. https://doi.org/10.3389/fpls.2014.00142
Sghaier N., Ben Ayed R., Ben Marzoug R., Rebai A. 2018. Dempster-Shafer theory for the prediction of auxin-response elements (AuxREs) in plant genomes. BioMed Research International 1-13. https://doi.org/10.1155/2018/3837060
Tsai K.L., Chen E.G., Chen J.T. 2016. Thidiazuron-induced efficient propagation of Salvia miltiorrhiza through invitro organogenesis and medicinal constituents of regenerated plants. Acta Physiologiae Plantarum 38(29): 2051-2060. https://doi.org/10.1007/s11738-015-2051-0
Vondráková Z., Eliášová K., Fischerová L., Fischerová l., Vágner M. 2011. The role of auxins in somatic embryogenesis of Abies alba. Central European Journal of Biology 6: 587–596. https://doi.org/10.2478/s11535-011-0035-7
Widoretno W., Indriyani S., Martasari C., Hakin R. 2017. Effects of sugar type and concentration on Batu 55 Mandarin (Citrus reticulata Blanco.) somatic embryo maturation. Journal of Agricultural Science 39 (1): 100-110. https://doi.org/10.17503/agrivita.v39i1.714
Wójcikowska B., Gaj M.D. 2017. Expression profiling of auxin response factor genes during somatic embryogenesis induction in Arabidopsis. Plant Cell Reports 36(6): 843-858. https://doi.org/10.1007/s00299-017-2114-3
Zavattieri M. A., Frederico A. M., Lima M., Sabino R., Arnholdt-Schmitt B. 2010. Induction of somatic embryogenesis as an example of stress-related plant reactions. Electronic Journal of Biotechnology 13 (1). https://doi.org/10.2225/vol13-issue1-fulltext-4