Bakhshaie M., Babalar M., Mirmasoumi M., Khalighi A. 2010. Effects of light, sucrose, and cytokinins on somatic embryogenesis in
Lilium ledebourii (Baker) Bioss. via transverse thin cell-layer cultures of bulblet microscales. The Journal of Horticultural Science and Biotechnology 85(6): 491-496.
https://doi.org/10.1080/14620316.2010.11512703
Biswas M., Islam R., Hossian M. 2007. Somatic embryogenesis in strawberry ( Fragaria sp.) Through callus culture. Plant Cell. Tissue and Organ Culture 90(1): 40-45. https://doi.org/10.1007/s11240-007-9247-y
|
Biswas M., Dutt M., Roy U., Islam R., Hossain M. 2009. Development and evaluation of in vitro somaclonal variation in strawberry for improved horticultural traits. Scientia Horticulturae 122(3): 409-416. https://doi.org/10.1016/j.scienta.2009.06.002
|
Boxus P. 1999. Micropropagation of strawberry via axillary shoots proliferation. In: Plant Cell Culture Protocols. Methods in Molecular Biology. Part III. Plant Propagation In Vitro. Hall R. D. (ed.) Humana Press Inc., Totowa NJ 11: 103-114. https://doi.org/10.1385/1-59259-583-9:103
|
|
Feng J.H., Chen J.T. 2014. A novel in vitro protocol for inducng direct somatic embryogenesis in Phalaeopsis aphrodite without taking explants. The Scientific World Journal 1-7. https://doi.org/10.1155/2014/263642
|
|
|
Gerdakaneh M., Mozafari A.A., Sioseh-mardah A., Sarabi B. 2011. Effects of different amino acids on somatic embryogenesis of strawberry ( Fragaria ananassa Duch.) Acta Physiolia Plantarum 33(5): 1847-1852. https://doi.org/10.1007/s11738-011-0725-9
|
Gerdakaneh M., Zohor M. 2013. The effect of picloram on somatic embryogenesis of different explants of strawberry ( Fragaria ananassa Duch.). Biotechnology Journal International 3(2):133-142. https://doi.org/10.9734/BBJ/2013/2370
|
Ghobeishavi H., Dorani Uliaie E., Alavikia S.S., Valizadeh M. 2015. Study of Factors Influencing Somatic Embryogenesis in Rice (Oryza Sativa L.). International Journal of Advanced Biological and Biomedical Research 3 (1): 43-50.
|
Ghosh A., Igamberdiev A.U., Debnath S.C. 2018. Thidiazuron-induced somatic embryogenesis and changes of antioxidant properties in tissue cultures of half-high blueberry plants. Scientific Report 8 (16978): 1-11. https://doi.org/10.1038/s41598-018-35233-6
|
Guo B., Abbasi B.H., Zeb A., Xu L.L., Wei Y.H. 2011. Thidiazuron: a multi-dimensional plant growth regulator. African Journal of Biotechnology 10(45): 8984-9000. https://doi.org/10.5897/AJB11.636
|
|
|
Kou Y., Yuan C., Zhao Q., Liu G., Nie J., Zhimin M., Cheng C., Teixeira da Silva J.A., Zhao, L. 2016. Thidiazuron triggers morphogenesis in Rosa canina L. protocorm-like bodies by changing incipient cell fate. Frontiers Plant Science 7(557): 1-13. https://doi.org/10.3389/fpls.2016.00557
|
|
Lim JH., Kim SD. 2009. Synergistic plant growth promotion by the indigenous auxins-producing PGPR Bacillus subtilis AH18 and Bacillus licheniforims K11. Journal of the Korean Society for Applied Biological Chemistry 52: 531–538. https://doi.org/10.3839/jksabc.2009.090
|
Lee P.L., Chen J.T. 2014. Plant regeneration via callus culture and subsequent in vitro flowering of Dendrobium huoshanense. Acta Physiologiae Plantarum 36: 2619- 2625. https://doi.org/10.1007/s11738-014-1632-7
|
Loyola-Vargas V.M., Avilez-Montalvo J.R., Avilez-Montalvo R.N., Márquez-López R.E., Galaz-Ávalos R.M., Mellado-Mojica E. 2016. Somatic embryogenesis in Coffea spp. Springer 241-261 pp. https://doi.org/10.1007/978-3-319-33705-0_15
|
|
Moradi S., Daylami S.D., Arab M., Vahdati K. 2017. Direct somatic embryogenesis in Epipactis veratrifolia, a temperate terrestrial orchid. The Journal of Horticultural Science and Biotechnology 92(1): 88-97. https://doi.org/10.1080/14620316.2016.1228434
|
Nic-Can G.I., Loyola-Vargas V.M. 2016. The role of the auxins during somatic embryogenesis. from book somatic embryogenesis: fundamental aspects and applications. Springer 171 -182 pp. https://doi.org/10.1007/978-3-319-33705-0_10
|
Ouyang Y., Chen Y., Lu J., da Silva J.A.T., Zhang X., Ma G. 2016. Somatic embryogenesis and enhanced shoot organogenesis in Metabriggsia ovalifolia. Scientific Reports (6) 2466: 21-9. https://doi.org/10.1038/srep24662
|
Pulianmackal A.J., Kareem A.V.K., Durgaprasad K., Trivedi Z.B., Prasad K. 2014. Competence and regulatory interactions during regeneration in plants. Frontiers Plant Science 142(5): 1-16. https://doi.org/10.3389/fpls.2014.00142
|
Sghaier N., Ben Ayed R., Ben Marzoug R., Rebai A. 2018. Dempster-Shafer theory for the prediction of auxin-response elements (AuxREs) in plant genomes. BioMed Research International 1-13. https://doi.org/10.1155/2018/3837060
|
Tsai K.L., Chen E.G., Chen J.T. 2016. Thidiazuron-induced efficient propagation of Salvia miltiorrhiza through invitro organogenesis and medicinal constituents of regenerated plants. Acta Physiologiae Plantarum 38(29): 2051-2060. https://doi.org/10.1007/s11738-015-2051-0
|
Vondráková Z., Eliášová K., Fischerová L., Fischerová l., Vágner M. 2011. The role of auxins in somatic embryogenesis of Abies alba. Central European Journal of Biology 6: 587–596. https://doi.org/10.2478/s11535-011-0035-7
|
Widoretno W., Indriyani S., Martasari C., Hakin R. 2017. Effects of sugar type and concentration on Batu 55 Mandarin ( Citrus reticulata Blanco.) somatic embryo maturation. Journal of Agricultural Science 39 (1): 100-110. https://doi.org/10.17503/agrivita.v39i1.714
|
Wójcikowska B., Gaj M.D. 2017. Expression profiling of auxin response factor genes during somatic embryogenesis induction in Arabidopsis. Plant Cell Reports 36(6): 843-858. https://doi.org/10.1007/s00299-017-2114-3
|
Zavattieri M. A., Frederico A. M., Lima M., Sabino R., Arnholdt-Schmitt B. 2010. Induction of somatic embryogenesis as an example of stress-related plant reactions. Electronic Journal of Biotechnology 13 (1). https://doi.org/10.2225/vol13-issue1-fulltext-4
|