Aghighi Shahverdi1 M., Abassi Shahmersi F., Mamivand B. 2015. Evaluation of morphological traits, yield and yield components of soybean genotypes (
Glycine max L.) in Parsabad Moghan region. Plant Ecophysiology 7 (24): 237-250.
Ahmadzadeh Araji H., Wayayok A., Massah Bavani A., Amiri E., Fikri Abdullah A., Daneshian J., Tef C.B.S. 2018. Impacts of climate change on soybean production under different treatments of field experiments considering the uncertainty of general circulation models. Agricultural Water Management 205: 63-71. https://doi.org/10.1016/j.agwat.2018.04.023
|
|
|
Amiri Z., Asgharipour M.R., Campbell D.E., Azizi K., Kakolvand E., Moghadam E.H. 2021. Conservation agriculture, a selective model based on emergy analysis for sustainable production of shallot as a medicinal-industrial plant. Journal of Cleaner Production 292: 126000. https://doi.org/10.1016/j.jclepro.2021.126000
|
Araya A., Keesstra S., Stroosnijder L. 2010. Simulating yield response to water of Teff (Eragrostis tef) with FAO's AquaCrop model. Field Crops Research 116: 196-204. https://doi.org/10.1016/j.fcr.2009.12.010
Asgharipour M.R., Mosapour, H. 2016. A foliar application silicon enhances drought tolerance in fennel. The Journal of Animal & Plant Sciences 26(4): 1056-1062.
|
Bao Y., Hoogenboom G., Mcclendon R., Urich P. 2015. Soybean production in 2025 and 2050 in the southeastern USA based on the SimCLIM and the CSM‑Cropgro‑soybean models. Climate Research 63: 73-89. https://doi.org/10.3354/cr01281
|
Blum A. 1988. Plant breeding for stress environments. CRC Press. Boca Raton. FLPP., pp. 38-78.
|
|
Doorenbos J., Kassam A.H. 1979. Yield response to water. Irrigation and Drainage, Paper No. 33. FAO, Rome, Italy, 193pp.
|
Doorenbos J., Oruitt W.O. 1977. Crop water requirements. FAO Irrigation and Drainage Paper. 24: 20-50.
Droogers, P., Kite, G. 2001. Simulation modeling at different scales to evaluate the productivity of water. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere 26(11-12): 877-880. https://doi.org/10.1016/S1464-1909(01)00100-9
|
Garcia-Vila M., Fereres E., Mateos L., Orgaz F., Steduto P. 2009. Deficit irrigation optimization of cotton with aquacrop. Journal of Agrobiology 101: 477-487. https://doi.org/10.2134/agronj2008.0179s
|
Geerts S., Raes D., Garcia M., Miranda R., Cusicanqui J.A., Taboada C., Mendoza J., Huanca R., Maman I.A., Condori O., Mamani J., Morales B., Osco V., Steduto P. 2009. Simulating yield response to water of quinoa (Chenopodium quinoa Willd.) with FAO-AquaCrop. Journal of Agrobiology 101: 499-508. https://doi.org/10.2134/agronj2008.0137s
|
Ghorbani K., Zakerinia M., Hezarjaribi A. 2014. The effect of climate change on water requirement of soybean in Gorgan. Journal of Agricultural Meteorology 2 (1): 60-72.
|
Giménez L., Paredes P., Pereira L.S. 2017. Water Use and Yield of Soybean under Various Irrigation Regimes and Severe Water Stress. Application of AquaCrop and SIMDualKc Models. Journal of Water Supply 9: 1-18. https://doi.org/10.3390/w9060393
|
Guo D., Zhao R., Xing X., Ma X. 2019. Global sensitivity and uncertainty analysis of the AquaCrop model for maize under different irrigation and fertilizer management conditions. Archives of Agronomy and Soil Science 64 (2): 1-19. https://doi.org/10.1080/03650340.2019.1657845
|
|
Ibrahim F.D., Ibrahim P.A., Odine A.I., Jirgi A.J., Usman R.K., Ogaji A., Gbanguba A.U. 2016. Impact of climate change on soybean production in local government area of Niger State. Asian Journal of Agricultural Extension, Economics and Sociology 10 (1): 1-6. https://doi.org/10.9734/AJAEES/2016/21886
|
IPCC. 2007. Summary for policymakers. Climate change, in physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change, eds.
|
IPCC. 2014. Report is based on the reports of the three Working Groups of the Intergovernmental Panel on Climate Change (IPCC), including relevant Special Reports.
|
Jamali S.H., Sadghi L., Sadeghin-Motahhar S.Y. 2011. Identification and distinction of soybean commercial cultivars using morphological and microsatellite markers. Iranian Journal of Crop Sciences 13 (1): 131-145. (In Persian)
|
Jones J.W., Jagtap S.S., Boote K.J. 2009. Climate change: implications for soybean yield and management in the USA Proc. World Soybean Research Conf. VI.
|
|
Khorsand A., Verdinezhad V., Shahidi A. 2014. Evaluation of Aquacrop model for simulation wheat yield, moisture and salinity of soil profiles under water and salinity stress. Journal of Water and Irrigation Management 4 (1): 89-104. (In Persian)
|
Khoshravesh M., Mostafazadeh-Fard B., Heidarpour M., Kiani A.R. 2013. AquaCrop model simulation under different irrigation water and nitrogen strategies. Water Science & Technology 67 (1): 232-238. https://doi.org/10.2166/wst.2012.564
|
Masuda T., Goldsmith P.D. 2009. World soybean production: Area harvested, yield, and long-term projections. International Food and Agribusiness Management Review 12 (4): 143-162.
|
Mekuria W., Noble A., McCartney M., Hoanh C.T., Douangsavanh S., Langan S. 2016. Soil management for raising crop water productivity in rainfed production systems in Lao PDR. Archives of Agronomy and Soil Science 62 (1): 53-68. https://doi.org/10.1080/03650340.2015.1037297
|
Ministry of Agriculture-Jihad. 2016. Agricultural Statistics, Vol. II.
|
|
Mohanty M., Sammi Reddy K., Probert M.E., Dalal R.C., Sinha N.K., Subba Rao A., Menzies N.W. 2016. Efficient nitrogen and water management for the soybean-wheat system of Madhya Pradesh, central India, Assessed Using APSIM Model. Proceedings of the National Academy of Sciences, India Section B: Biological Science 86: 217-228. https://doi.org/10.1007/s40011-014-0443-3
|
Nehbandani A.R., Soltani A. 2016. Simulate the effect of climate change on development, iIrrigation requirements and soybean yield in Gorgan. Journal of Water and Soil Sciences 30: 77-87.
|
Ohe I., Reiko U., Jyo S., Kuramashi T., Saitoh K., Kuroda T. 2007. Effect of rising temperature on flowering, pod set, dry matter production and seed yield in soybean. Japanese Journal of Crop Science 76 (1): 433-444. https://doi.org/10.1626/jcs.76.433
|
Raes D., Steduto P., Hsiao T.C., Fereres E. 2012. Reference manual AquaCrop, FAO, Land and Water Division, Rome, Italy.
|
Rashidian L. 2017. Study of the process of climate change according to data simulation using LARS WG software during 2010-2030: Case study of Semnan Province. International Journal of Marine and Environmental Sciences 11 (9): 848-852.
|
Ribas-Carbo M., Taylor N.L., Giles L., Busquets S., Finnegan P.M., Day D.A., Lambers H., Medrano H., Berry J.A., Flexas J. 2005. Effects of water stress on respiration in soybean leaves. Plant Physiology 139: 466-473. https://doi.org/10.1104/pp.105.065565
|
Rio A.D., Sentelhas P.C., Farias J.R.B., Sibaldelli R.N.R., Ferreira R.C. 2015. Alternative sowing dates as a mitigation measure to reduce climate change impacts on soybean yield in southern Brazil. International Journal of Climatology 36: 3664-3672. https://doi.org/10.1002/joc.4583
|
Rodríguez Díaz J.A., Weather Head E.K. Knox J.W., Camacho1 E. 2020. Climate change impacts on irrigation water requirements in the Guadalquivir River Basin in Spain. Regional Environmental Change 7: 149-159. https://doi.org/10.1007/s10113-007-0035-3
|
|
|
Semenov M.A., Barrow E.M. 2002 LARS-WG: A Stochastic Weather Generator for Use in Climate Impact Studies, Version 3.0, User Manual.
|
Silva V.P.R., Silva R.A., Maciel G.F., Braga C.C., Silva Júnior J.L., Souza C., Almeida R.S.R., Silva M.T., Holanda R.M. 2018. Calibration and validation of the AquaCrop model for the soybean crop grown under different levels of irrigation in the Motopiba region, Brazil. Rural Engineer 48: 1-8. https://doi.org/10.1590/0103-8478cr20161118
|
Steduto A., Raes P., Hsiao T., Fereres T.C., Heng E., Izzi L., Hoogeveen J. 2009. AquaCrop: a new model for crop prediction under water deficit conditions. Options Mediterranean 80: 285-292.
|
Steduto A., Hsiao T.C., Raes D., Fereres E. 2009b. AquaCrop-The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal 101: 426-437. https://doi.org/10.2134/agronj2008.0139s
|
Stricevic R., Simic A., Kusvuran A., Cosic M. 2017. Assessment of AquaCrop model in the simulation of seed yield and biomass of Italian ryegrass. Archives of Agronomy and Soil Sciences 63 (9):1301-1313. https://doi.org/10.1080/03650340.2016.1275580
|
Sun Z., Jia S.F., Lv A.F., Yang K.J., Svensson J., Gao Y.C. 2015. Impacts of climate change on growth period and planting boundaries of winter wheat in China under RCP4.5 scenario. Earth System Dynamics Discussion 6: 2181-2210 https://doi.org/10.5194/esdd-6-2181-2015
|
Tacarindua C.R., Shiraiwa T., Homma K., Kumagai E., Sameshima R. 2013. The effects of increased temperature on crop growth and yield of soybean grown in a temperature gradient chamber. Field Crop Research 154 (1): 74-81. https://doi.org/10.1016/j.fcr.2013.07.021
|
Travasso M.I., Magrin G., Rodríguez G.R., López G.M. 2009. Potential impacts of climate change on soybean yield in the Argentinean pampas and adaptation measures for future sustainable production. Earth and Environment Science 6: 37-40. https://doi.org/10.1088/1755-1307/6/37/372045
|
Vara Prasad P., Allen J.L., Boote K. 2005. Crop responses to elevated carbon dioxide and interaction with temperature: grain legumes. Journal of Crop Improvement 13: 113-155. https://doi.org/10.1300/J411v13n01_07
|
Vatankhah Sadat A. 2009. Feasibility regions cultivation of citrus in Prs Abad Moghan. M.Sc., Thesis. Azad University, Ahar branch, 95 pp.
|
Voloudakisa D., Karamanosa A., Economoua G., Kalivasb D., Vahamidisa P., Kotoulasa V., Kapsomenakisc J., Zerefosc C. 2014. Prediction of climate change impacts on cotton yield in Greece fewer than eight climatic models using the AquaCrop crop simulation model and discriminate function analysis. Agricultural Water Management 147: 116-128. https://doi.org/10.1016/j.agwat.2014.07.028
|
Wheeler T.R., Hong T.D., Ellis R.H., Battsm G.R., Morison J.I.L., Hadley P. 1996. The duration and rate of grain growth, and harvest index, of wheat ( Triticum aestivum L.) in response to temperature and CO2. Journal of Experimental Botany 47 (5): 623-630. https://doi.org/10.1093/jxb/47.5.623
|
Wilcox J., Makowski D. 2014. A meta-analysis of the predicted effects of climate change on wheat yield using simulation studies. Field Crop Research 156 (2): 180-190. https://doi.org/10.1016/j.fcr.2013.11.008
|
Zhang W., Liu W., Xue Q., Chen J., Han X. 2013. Evaluation of the AquaCrop model for simulation yield response of winter wheat to water on the southern Loess Plateau of China. Water Sciences Technology 68 (4): 821-829. https://doi.org/10.2166/wst.2013.305
|
|